UM2082F08 用户手册

版本: V1.1

广芯微电子(广州)股份有限公司

http://www.unicmicro.com/

UM2082F08 用户手册 条款协议

条款协议

本文档的所有部分,其著作产权归广芯微电子(广州)股份有限公司(以下简称广芯微电子) 所有,未经广芯微电子授权许可,任何个人及组织不得复制、转载、仿制本文档的全部或部分组件。 本文档没有任何形式的担保、立场表达或其他暗示,若有任何因本文档或其中提及的产品所有资讯 所引起的直接或间接损失,广芯微电子及所属员工恕不为其担保任何责任。除此以外,本文档所提 到的产品规格及资讯仅供参考,内容亦会随时更新,恕不另行通知。

- 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。
 用户如在设备设计中应用本文档中的电路、软件和相关信息,请自行负责。对于用户或第三方因使用上述电路、软件或信息而遭受的任何损失,广芯微电子不承担任何责任。
- 2. 在准备本文档所记载的信息的过程中,广芯微电子已尽量做到合理注意,但是,广芯微电子并不保证这些信息都是准确无误的。用户因本文档中所记载的信息的错误或遗漏而遭受的任何损失,广芯微电子不承担任何责任。
- 3. 对于因使用本文档中的广芯微电子产品或技术信息而造成的侵权行为或因此而侵犯第三方的专利、版权或其他知识产权的行为,广芯微电子不承担任何责任。本文档所记载的内容不应视为对广芯微电子或其他人所有的专利、版权或其他知识产权作出任何明示、默示或其它方式的许可及授权。
- 4. 使用本文档中记载的广芯微电子产品时,应在广芯微电子指定的范围内,特别是在最大额定值、电源工作电压范围、热辐射特性、安装条件以及其他产品特性的范围内使用。对于在上述指定范围之外使用广芯微电子产品而产生的故障或损失,广芯微电子不承担任何责任。
- 5. 虽然广芯微电子一直致力于提高广芯微电子产品的质量和可靠性,但是,半导体产品有其自身的具体特性,如一定的故障发生率以及在某些使用条件下会发生故障等。此外,广芯微电子产品均未进行防辐射设计。所以请采取安全保护措施,以避免当广芯微电子产品在发生故障而造成火灾时导致人身事故、伤害或损害的事故。例如进行软硬件安全设计(包括但不限于冗余设计、防火控制以及故障预防等)、适当的老化处理或其他适当的措施等。

UM2082F08 用户手册 版本修订

版本修订

版本	日期	描述
V1.0	2022.06.08	初始版
V1.1	2023.08.14	新增 MCU 上电时序章节;
		更新寄存器描述;
		新增 32bit 模式检测相关内容;
		优化内容排版。

目录

1	系统			
	1.1	主要特	寺点	1
	1.2	功能机	王图	4
	1.3		王图	
	1.4	低频升	F线唤醒系统结构框图	6
2	引胠	P描述		7
	2.1		· 管脚分布	
	2.2		描述	
3	カトIH	H 學		10
S	3.1			
	3.1		ず性 犬态字寄存器(PSW)	
	3.3		号(ACC)	
	3.4		子器	
	3.5		指针(DPTR)	
4				
	4.1		寺性	
	4.2		RAM (ISRAM)	
	4.3	外部在	字储空间	11
	4.4		字储器 EFLASH	
5	系统	記置(S	FR)	14
	5.1	地址明	央射	14
	5.2	系统时	寸钟	14
		5.2.1	主要特性	14
		5.2.2	时钟定义	15
		5.2.3	时钟结构图	15
	5.3	复位派	亰	16
		5.3.1	主要特性	16
		5.3.2	看门狗复位	16
		5.3.3	LVD 与 LVR 复位	16
		5.3.4	外部复位	16
		5.3.5	寄存器	16
	5.4	低功制	毛模式	17
		5.4.1	主要特性	17
		5.4.2	低功耗模式	17
		5.4.3	低功耗模式表	17
	5.5	系统署	导存器	18
		5.5.1	P0	
		5.5.2	SP	
		5.5.3	DPTR	
		5.5.4	PCON	
		5.5.5 5.5.6	TCON	
		5.5.6	TL0	
		5.5.7	TL1	
		5.5.9	TH0	
		5.5.10	TH1	
		5.5.11	PDSEL	

5.5.12	POREN	
5.5.13	P1	
5.5.14	LDOTRIML	24
5.5.15	DPS	24
5.5.16	ADCIER	24
5.5.17	P0DR	24
5.5.18	SOCON	
5.5.19	S0BUF	
5.5.20	S1CON	
5.5.21	S1BUF	
5.5.22	S1REL	
5.5.23	UARTEN	
5.5.24	RCLTRIM	
5.5.25	P2	
5.5.26	OUS	
5.5.27	OINTEN	
	OINTUS	
5.5.28		
5.5.29	OSTATUS	
5.5.30	OPSET	
5.5.31	IEN0	
5.5.32	IP	
5.5.33	SOREL	
5.5.34	ADCGCR0	
5.5.35	ADCGCR1	
5.5.36	REMAP	33
5.5.37	CLKST	34
5.5.38	ESTCR	34
5.5.39	ADCGCR2	35
5.5.40	ADCGCR3	
5.5.41	ADCDR0	
5.5.42	ADCDR1	
5.5.43	IEN1	
5.5.44	LDOTRIMH	
5.5.45	RCHTRIMH	
5.5.46	RCHTRIML	
5.5.47	PWM0PL/H	
5.5.48	PWM0DL/H	
	PWM0CON	
	PSW	
5.5.50		
	OADRL/H	
5.5.52	ODATA	
5.5.53	OCTRL	
5.5.54	P0PD	
	P00D	
	POCS	
5.5.57	RSTSTAT	
5.5.58	SYSDIV	42
5.5.59	P1PD	43
5.5.60	P10D	
5.5.61	P1CS	
5.5.62	LVDCON	44
5.5.63	PCLK0	
5.5.64	PCLK1	
5.5.65	ACC	
5.5.66	PxIRQ	
5.5.67	P2PD	
	P1DR	
J.J.J		

	5.5.69				
	5.5.70 5.5.71				
	5.5.72				
	5.5.73				
	5.5.74				
	5.5.75	В			. 50
	5.5.76				
	5.5.77				
	5.5.78				
	5.5.79				
	5.5.80 5.5.81				
	5.5.82				
	5.5.83				
	5.5.84				
	5.5.85				
	5.5.86				
	5.5.87				
6	无线射频(F	RF)			. 57
	6.1 主要特	寺性			. 57
	6.2 寄存器	足			. 57
	6.2.1	Reg00	Default Value:	0x7D	. 57
	6.2.2	Reg01	Default Value:	0x14	. 58
	6.2.3	Reg02	Default Value:	0xF0	. 58
	6.2.4	Reg04	Default Value:	0x00	. 59
	6.2.5	Reg05	Default Value:	0x00	. 59
	6.2.6	Reg06	Default Value:	0x00	. 59
	6.2.7	Reg07	Default Value:	Read only	. 60
	6.2.8	Reg08	Default Value:	Read only	. 60
	6.2.9	Reg09	Default Value:	Read only	. 60
	6.2.10	Reg10	Default Value:	Read only	. 61
	6.2.11	Reg11	Default Value:	Read only	. 61
	6.2.12	Reg12	Default Value:	0x20	. 61
	6.2.13	Reg13	Default Value:	0x05	. 62
	6.2.14	Reg14	Default Value:	0x1F	. 62
	6.2.15	Reg15	Default Value:	0x06	. 63
	6.2.16	Reg17	Default Value:	0x69	. 64
	6.2.17	Reg18	Default Value:	0x96	. 64
	6.2.18	Reg21	Default Value:	0x00	. 64
	6.2.19	Reg22	Default Value:	0x3F	. 65
	6.2.20	Reg24	Default Value:	0x3C	. 65
	6.2.21	Reg31	Default Value:	0x00	. 65
	6.2.22	Reg32	Default Value:	0x00	. 66
	6.2.23	Reg33	Default Value:	0x00	. 66
	6.2.24	Reg34	Default Value:	0x00	. 66
	6.2.25	Reg35	Default Value:	0x00	. 66
	6.2.26	Reg36	Default Value:	0x00	. 67
	6.2.27	Reg37	Default Value:	0x00	. 67
	6.2.28	Reg38	Default Value:	0x00	. 67
	6.2.29	Reg40	Default Value:	0x00	. 67
	6.2.30	Reg42	Default Value:	0x33	. 68
	6.2.31	Reg43	Default Value:	0x09	. 68
		-			

			_			69
	6.3	运行机				69
		6.3.1	标准监听	模式	 	69
		6.3.2	轮询扫描	模式	 	70
		6.3.3	间隙运行	模式	 	71
	6.4	唤醒机	莫式		 	71
		6.4.1	载波检测		 	71
		6.4.2	单模式检	:测	 	73
		6.4.3	双模式检	:测	 	74
	6.5	对码[匹配模块		 	75
	6.6	对码说	2置		 	75
	6.7		-			76
	6.8					76
	6.9					76
	6.10					
	6.11					77
_						
7						78
	7.1					
	7.2		•			
	7.3					
	7.4					
		7.4.1				
		7.4.2				
		7.4.3				79
8	PWI	M (脉宽)	翻模块)			81
_	8.1	•				
	8.2				*	81
	8.3					
	8.4					82
9						83
	9.1					83
	9.2					83
	9.3					84
	9.4	_				84
		9.4.1				
		9.4.2				85 86
	9.5					86
	9.5	9.5.1				87
		9.5.2				
		9.5.3	_			88
	9.6	使用流	_			88
		9.6.1	IO 输出		 	88
		9.6.2				89
		9.6.3				89
40						
10						90
	10.1	_				90
	10.2					90
	10.3	使 使	H流桯		 	90
11	U	ART0/1 (增强型串[⊐)	 	91

	11.1 特性	生	91
	11.2 UA	.RT0 工作模式	91
	11.3 UA	.RT1 工作模式	94
	11.4 多村	机通讯	95
	11.5 波特	持率	95
	11.6 使月		96
	11.6.1	UART0 mode1 使用流程	96
	11.	6.1.1 串口初始化	96
	11.	6.1.2 串口发送字节	96
		6.1.3 串口接收字节	
		UART1 modeB 使用流程	
		6.2.1 串口初始化	
		6.2.2 串口发送字节	
	11.	6.2.3 串口接收字节	97
12	SPI		98
		要特性	
	12.2 寄花	字器描述	98
	12.2.1	SPCR1 控制寄存器	98
	12.2.2	SPCR2 控制寄存器	99
	12.2.3	SPCR3 控制寄存器	100
	12.2.4	SPCR4 控制寄存器	101
	12.2.5	SPIIE 中断使能寄存器	101
	12.2.6	SPSR 状态寄存器	102
	12.2.7	TXBUF 发送数据寄存器	102
	12.2.8	RXBUF 接收数据缓冲寄存器	103
	12.3 使月		103
	12.3.1	SPI 初始化	
	12.3.2	SPI 发送流程	103
	12.3.3	SPI 接收流程	104
13	I PTIM (f	武功耗定时器)	105
10		术	
		要特性	
		~ 7 / E · · · · · · · · · · · · · · · · · ·	
	13.3.1		
	13.3.2		
	13.3.3	计数模式	
	13.3.4	16bit PWM	
	13.4 寄花	存器描述	106
	13.4.1	LPTCFG0 寄存器	106
	13.4.2	LPTCFG1 寄存器	107
	13.4.3	LPTCNT 计数值寄存器	108
	13.4.4	LPTCMP 比较值寄存器	108
	13.4.5	LPTTARGET 目标值寄存器	108
	13.4.6	LPTIE 中断使能寄存器	
	13.4.7	LPTIF 中断标志寄存器	
	13.4.8		
	13.5 使月		
	13.5.1	普通定时器	
	13.5.2		
	13.5.3	外部异步脉冲计数模式	110

14	_		
	14.1 概刻	<u> </u>	112
	14.2 主要	長特性	112
	14.3 寄存	7 器描述	112
	14.3.1	I2C_SLAVE_ADDR1 从设备地址寄存器 1	113
	14.3.2		
	14.3.3		
	14.3.4		114
	14.3.5		115
	14.3.6	I2C SR1 状态寄存器 1	
	14.3.7	I2C DR 数据寄存器	
	14.3.8	I2C SLAVE ADDR2 从设备地址寄存器 2	
	14.4.1	- 模式选择	
	14.4.2	I2C 从模式	
	14.4.3	I2C 主模式	
	_		
	14.5.1	I2C 初始化	
	14.5.2	作为主发送器	
	14.5.3	作为主接收器	
	14.5.4	作为从发送器	
	14.5.5	作为从接收器	
15		数转换器)	
	15.1 主要	ヲ特性	122
	15.2 使用	月流程	122
16	WDT (毛ì]狗定时器)	122
10		了办列在中了品了	
		□ 月流程	
17			
		<u></u>	
	17.2 主要	ヲ特性	124
	17.3 使用	月流程	124
18	山烁		125
10		‡	
		T 折汇总	
19	指令集		
	19.1 指令	>操作数说明	126
	19.2 算数	枚操作指令	126
	19.3 逻辑	咠操作指令	127
	19.4 数排	居传送指令	128
	19.5 控制	间程序转移指令	129
	19.6 位指	操作指令	129
20	由与会粉		120
20		+ 早 + 郊 ウ 店	
	_	寸最大额定值	
		主要电气特性(不含 MCU)	
	20.2.1	通用工作条件	
	20.2.2	低频无线唤醒功耗值	
	20.2.3	低频无线唤醒通道建立时间	
	20.2.4	低频无线唤醒接收灵敏度	131

	20.3 MCU	! 主要电气特性(不含 RF)	131
		通用工作条件	
	20.3.2	上电和掉电时的工作条件	132
	20.3.3	DC 参数	132
	20.3.4	交流 AC 参数	134
	20.3.5	12 位 A/D 转换器	136
	20.3.6	内存擦/写特性	138
	20.3.7	低功耗模式返回时间	138
21	封装信息.		139
	21.1 OEN!	20 (/*/mm)	130

图目录

冬	1-1:	功能框图	4
冬	1-2:	电源框图	5
冬	1-3:	低频无线唤醒系统内部结构框图	6
冬	2-1:	管脚分布图	7
冬	5-1:	时钟结构图	. 15
冬	6-1:	标准监听模式	. 70
冬	6-2:	轮询扫描模式	. 70
冬	6-3:	间隙运行模式	. 71
		载波检测	
冬	6-5:	曼彻斯特解码关闭,16bit 模式	. 73
冬	6-6:	曼彻斯特解码使能, 16bit 模式波形图	. 73
		曼彻斯特解码关闭,32bit 模式	
		曼彻斯特解码使能,32bit 模式波形图	
冬	6-9:	双模式检测 16bit 模式波形图	. 74
冬	6-10	· 双模式检测 32bit 模式波形图	. 75
		RF 运行状态图	
		写操作时序图	
		读操作时序图	
		写操作流程图	
-		擦除操作流程图	
		PWM 输出范例图	
		PWM 输出周期或占空比改变范例图	
		Transmit Timing of Mode 0	
		Receive Timing of Mode 0	
		Transmit Timing of Mode 1	
		Receive Timing of Mode 1	
		Transmit Timing of Mode 2	
		Receive Timing of Mode 2	
		· I2C 通信时序图	
		7 位从发送器的传送图	
		7 位从接收器的传送图	
		7 位主发送器的传送图	
冬	14-5	7 位主接收器的传送图	119
冬	21-1:	· QFN20 封装图	139

表目录

表	2-1: 引脚功能描述	7
表	4-1: 外部存储空间地址映射表	12
表	5-1: 系统 SFR 映射表	14
表	5-2: 低功耗模式表	17
表	6-1: 无线射频寄存器表	57
表	6-2: 频段对应的载波周期表	72
表	6-3: RF 典型配置表	77
表	8-1: 输出时序(PWM0SS=1)表	82
表	9-1: P0 口复用表	83
表	9-2: P1 口复用表	83
表	9-3: P2 口复用表	84
表	9-4: IO_IE 寄存器列表	85
表	9-5: IO_SR 寄存器列表	87
表	11-1: UART0 工作方式列表	91
表	11-2: UART1 工作方式列表	94
表	11-3:波特率误差表	95
表	12-1: SPI 寄存器列表	98
表	13-1: LPTIMER 寄存器列表	106
	14-1: I2C 寄存器列表	
表	18-1: 中断信号汇总表	125
表	19-1: 指令操作数表	126
	19-2: 算数操作数表	
表	19-3: 逻辑操作指令表	127
表	19-4:数据传送指令表	128
表	19-5: 控制程序转移指令表	129
	19-6: 位操作指令表	
表	20-1: 芯片绝对最大额定值表	130
表	20-2: 通用工作条件	130
表	20-3: 各工作模式下功耗表	131
表	20-4: 通道建立时间表	131
表	20-5:接收灵敏度表	131
表	20-6: 通用工作条件	131
表	20-7: 上电和掉电时的工作条件	132
	20-8: 静态参数表	
表	20-9: IO 特性表	133
表	20-10: 端口输出特性表	134
表	20-11: 端口输入特性表	134
表	20-12: RCH 振荡器特性表	134
表	20-13: RCL 振荡器特性表	135
表	20-14: RC 振荡器表	135
表	20-15: LC 振荡器表	135
表	20-16: LVR 低电压检测特性表	135
表	20-17: LVD 低电压检测特性表	136
表	20-18: ADC 特性表	136
表	20-19: 内存擦/写特性表	138
表	20-20: 低功耗模式返回时间表	138

1 系统概述

UM2082F08 是广芯微电子(广州)股份有限公司研制的基于单周期8051 内核的超低功耗8位、 具有三通道低频无线唤醒 ASK 接收功能的 SoC 芯片。芯片可检测 30~300KHz 范围的 LF(低频) 载波频率数据并触发唤醒信号,同时可以调节接收灵敏度,确保在各种应用环境下实现可靠唤醒, 其拥有的三个独立通道可配置成不同的唤醒模式且每个通道都具有 RSSI 检测功能,支持多种数据 率的配置,支持曼彻斯特编码方式。此外,芯片内部集成了 32KB 的 Flash、最大 2KB+256B 的 SRAM、12 位 1Msps 的 SAR ADC 以及 UART、SPI、I2C、PWM 等通用外围通讯接口。

UM2082F08 具有资源高整合度、高抗干扰性能、高可靠性、低功耗设计以及极简外围器件等技术特点。内置高速时钟 ROSC、LDO 和 POR 模块,板级电路可免晶振、LDO、复位电路。低频无线唤醒采用独立的内部集成时钟信号发生器,时钟源来自内部 RC 振荡器(32KHz),用户无需进行外部校准就能让芯片发挥出最佳性能。支持 Keil MDK 通用集成开发环境,支持 C 语言和汇编语言进行软件开发。

典型应用场景:

- PKE 无钥匙门禁系统
- 智能交通,智慧城市,智能家居
- 智能门锁,资产追踪、无线监控等智能传感器终端应用
- 工业物联网终端应用
- 玩具控制等通用控制器应用

1.1 主要特点

● 超低功耗电源管理系统(不含低频无线唤醒)

- 0.59μA @3.0V DeepSleep+定时唤醒,低速时钟运行,IO、SRAM 以及寄存器数据保持
- 0.32μA @3.0V Stop 模式, 所有时钟停止, IO、SRAM 以及寄存器数据保持
- 95µA/MHz @3.0V Active 模式
- · 内置 ROSC/LDO/POR 模块,板级系统可免去晶振/LDO/复位电路

● 存储器

- RAM: Idata 256B, Xdata 最大 2KB
- 32KB eFlash:
 - ✓ Sector 大小: 512B
 - ✓ Sector 擦除时间: 5ms
 - ✓ Byte 编程时间: 7.5µs

- ✓ 擦写次数: 20,000 次
- ✓ 数据保存时间: 100 年 @常温

● 低频无线唤醒(不含 MCU)

- 三个独立天线通道: X/Y/Z 轴
- 载波频率范围: 30~300KHz
- 接收灵敏度: <70uVrms
- 数据率: 1~8kbps
- 唤醒距离: >10m
- 低功耗:
 - ✓ 三通道轮询扫描模式: 2.9µA
 - ✓ 三通道间歇运行模式: 2.1µA
 - ✓ 单通道间歇运行模式: 1.7µA

● 定时/计数器

- 2 个 16 位通用定时器 T0/T1, 可作 LPTimer 用
- 1 个 16 位低功耗定时器 LPTimer, 支持 PWM 输出
- 1 个看门狗 WDT

● 时钟源

- 内部高频 RC 振荡器: 48MHz (系统最高可以跑 24MHz,即内部高频 RC 时钟的 2 分频,此时需将 flash 读等待时间设

置为 1。默认情况下内部高频 RC 时钟 3 分频之后作为系统时钟, 即 16MHz)

- 内部低频 RC 振荡器: 32KHz
- 低频无线唤醒内部独立 RC 振荡器: 32KHz

● 复位源

- POR(上电复位)
- LVR (掉电复位)
- LVD (低电压检测)
- 看门狗复位

● 内建低电压检测模块(LVD)

● 外围接口

- PWM: 2 路 16 位 PWM 输出(含 LPTimer 中 1 路)
- UART: 2 个增强型串口 UART0/UART1
- ADC: 6 通道 12 位 SAR ADC, 1Msps 采样速率

- I2C: 主/从模式,速率 400Kbps (max)
- SPI: 1 路, 主/从模式, Mode0/1/2/3 协议, 最高速率 12Mbps
- GPIO: 最大 11 个,内置上/下拉可配置

● 主要电气参数

- 工作电压: 2.0~3.6V
- 工作温度: -40~+85°C
- ESD 保护: 3KV (HBM)

● 中断源

- 定时器 T0/T1
- EFC 中断
- 全部 IO 支持外部中断
- UART0/UART1
- ADC
- PWM 周期中断
- SPI
- LPTIMER
- I2C

● 省电模式支持

- Sleep Mode
- DeepSleep Mode
- Stop Mode
- PIN Reset
- 封装: QFN20

1.2 功能框图

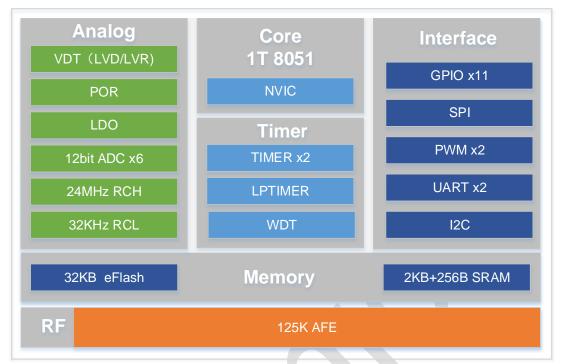


图 1-1: 功能框图

1.3 电源框图

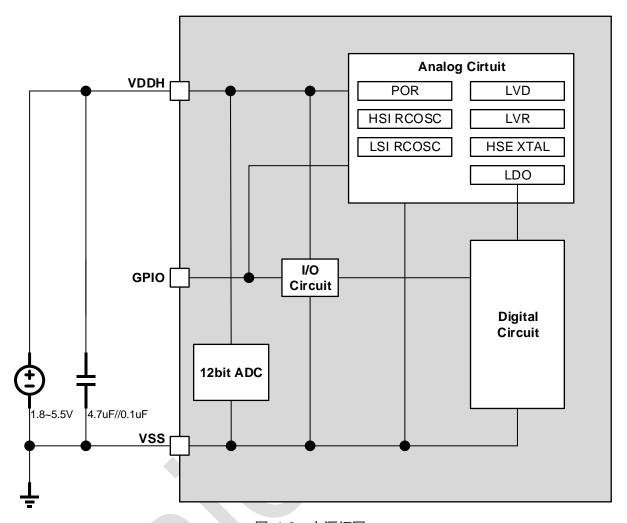


图 1-2: 电源框图

注意:

每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

1.4 低频无线唤醒系统结构框图

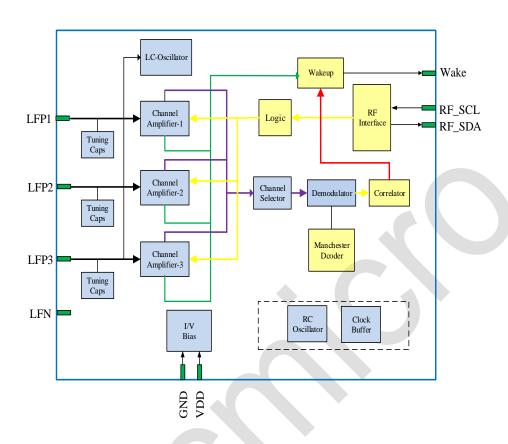


图 1-3: 低频无线唤醒系统内部结构框图

UM2082F08 用户手册 引脚描述

2 引脚描述

2.1 封装管脚分布

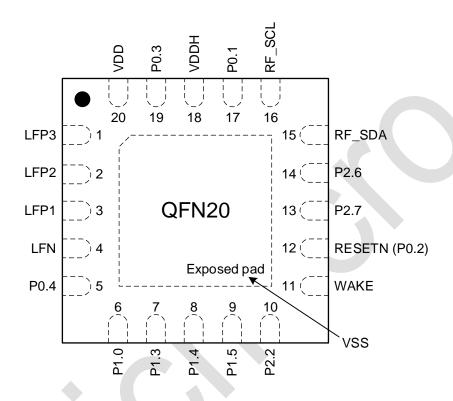


图 2-1: 管脚分布图

2.2 信号描述

表 2-1: 引脚功能描述

封装引脚编号	引脚	Ю	复位状态		797形加处	
(QFN20)	名称	Туре	DIR	PU PD	引脚类型	功能描述
0	VSS	G	AP	-	VSS	芯片地(LF PAD)公共地
1	LFP3	I	Al	-	LFP3	通道3天线输入
2	LFP2	1	ΑI	-	LFP2	通道2天线输入
3	LFP1	I	Al	-	LFP1	通道1天线输入
4	LFN	1	Al	-	LFN	通道共用地
5	P0.4	I/O	DI		P0.4(默认)	通用数据输入/输出管脚
5	PU.4	1/0	DI	-	I2C_SDA	I2C_SDA信号
					P1.0(默认)	通用数字输入/输出管脚
6	P1.0	I/O	DI	-	PWM0	PWM0 信号
					LPT_IN	LPTIMER 输入信号

UM2082F08 用户手册 引脚描述

CQFN20 名称	封装引脚编号	引脚	Ю	复位状态			
P1.3 I/O DI	(QFN20)	名称	Туре	DIR		引脚类型	功能描述
P1.3						I2C SCL	I2C SCL 信号
SPI_SCK SPI_SCK 信号 P1.4 (默认) 通用数字输入输出管脚 RX1	7	D4 0	1/0	-		P1.3(默认)	通用数字输入/输出管脚
RX1	/	P1.3	1/0	וטו	-	SPI_SCK	SPI_SCK 信号
8 P1.4 I/O DI - AINO ADC CH0 输入 SPI_MOSI 信号 9 P1.5 I/O DI - SPI_MOSI 信号 10 P1.5 (默认) 通用数字输入/输出管脚 10 P2.2 I/O DI - SPI_MISO SPI_MISO 信号 AIN1 ADC CH1 输入信号 P2.2 (默认) 通用数字输入/输出管脚 AIN3 ADC CH3输入 ADC CH3输入 AIN3 ADC CH3输入 Reset Pin, 低电平复位,内部强制上拉。此信号为 UART 批量下载必要信号,建议 PCB 上引出该管脚信号 (pad 或 pin) P0.2 通用数字输入/输出管脚 P2.7 (默认) 通用数字输入/输出管脚 P2.7 (默认) 通用数字输入/输出管脚 UARTO RX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN6 ADC CH6 输入 P2.6 (默认) 通用数字输入/输出管脚 P2.6 (默认) 通用数字输入/输出管脚 UARTO TX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH6 输入 P2.6 (默认) 通用数字输入/输出管脚 P3.6 (默认) 通用数字输入/输出管脚 UARTO TX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH6 输入 P2.6 (默认) 通用数字输入/输出管脚 P5.6 (默认) 通用数字输入/输出管脚 UARTO TX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH6 输入 P2.6 (默认) 通用数字输入/输出管脚 B7.6 (默认) 通用数字输入/输出管脚 P3.6 (默认) 通用数字输入/输出管脚 B8.7 (财产 NRST 信号配合使用) P0.1 (默认) 通用数字输入/输出管脚 B9.8 (财产 NRST 信号配合使用) P0.1 (默认) 通用数字输入/输出管脚 B9.9 (财产 NRST 信号配合使用) P0.3 (默认) 通用数字输入/输出管脚						P1.4(默认)	通用数字输入/输出管脚
Part	0	D4 4	1/0	D.		RX1	UART1 RX 信号
9 P1.5 I/O DI - P1.5 (默认) 通用数字输入/输出管脚 TX1 UART1 TX 信号 SPI_MISO 信号 AIN1 ADC CH1 输入信号 P2.2 (默认) 通用数字输入/输出管脚 AIN3 ADC CH3输入 UL信号为 UART1 批量下载必要信号,建议 PCB 上引出该管脚信号 (pad 或 pin) P0.2 通用数字输入/输出管脚 P2.7 (默认) 通用数字输入/输出管脚 UART0 RX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN6 ADC CH6 输入 通用数字输入/输出管脚 UART0 RX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN6 ADC CH6 输入 通用数字输入/输出管脚 UART0 RX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH5 输入 CBOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH5 输入 ADC CH5 MAC CH5 MAC CH5 MAC CH5 MAC CH5 MAC	0	P1.4	1/0	Di	-	AIN0	ADC CH0 输入
9 P1.5 I/O DI - TX1 SPI_MISO SPI_MISO 信号 SPI_MISO 信号 AIN1 ADC CH1 输入信号 AIN1 ADC CH1 输入信号 P2.2 (默认) 通用数字输入/输出管脚 AIN3 ADC CH3输入 11 WAKE - DO - WAKE 唤醒中断信号输出 Reset Pin, 低电平复位,内部强制上拉。此信号为 UART 批量下载必要信号,建议 PCB 上引出该管脚信号 (pad 或 pin) P0.2 通用数字输入/输出管脚 UARTO RX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN6 ADC CH6 输入 P2.6 (默认) 通用数字输入/输出管脚 UARTO TX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN6 ADC CH5 输入 ADC CH5 输入 AIN5 ADC CH5 输入 P2.6 (默认) 通用数字输入/输出管脚 UARTO TX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH5 输入 ADC CH5 输入 P2.6 (默认) 通用数字输入/输出管脚 UARTO TX (BOOT UART 下载用此口,需 NRST 信号配合使用) AIN5 ADC CH5 输入 TX0 证明 NRST 信号配合使用) AIN5 ADC CH5 输入 TX0 证明 NRST 信号配合使用) AIN5 ADC CH5 输入 TX0 证明 NRST 信号配合使用的 ADC CH5 输入 ADC CH5 MA ADC CH5 输入 ADC CH5 MA ADC CH5						SPI_MOSI	SPI_MOSI 信号
9 P1.5 I/O DI - SPI_MISO SPI_MISO 信号 10 P2.2 I/O DI - P2.2 (默认) 通用数字输入/输出管脚 11 WAKE - DO - WAKE 唤醒中断信号输出 12 RESETN I/O DI PU RESETN (默认) Reset Pin, 低电平复位,内部强制上拉。此信号为 UART 批量下载必要信号,建议 PCB 上引出该管脚信号,建议 PCB 上引出该管脚信号 (pad 或 pin) 13 P2.7 I/O DI - RXO 通用数字输入/输出管脚 14 P2.7 I/O DI - RXO 国内数字输入/输出管脚 14 P2.6 I/O DI - TXO JAINS ADC CH5 输入 14 P2.6 I/O DI - TXO UARTO TX 15 RF_SDA - DIO - RF_SDA 信号 ADC CH5 输入 15 RF_SCL - DI - RF_SDA 信号 RF_SCL 信号 16 RF_SCL - DI - RF_SCL RF_SCL 信号 RF_SCL 信号 17 P0.1 I/O DI - P0.1 (默认) 通用数字输入/输出管脚						P1.5(默认)	通用数字输入/输出管脚
SPI_MISO SPI_MISO 信号 AIN1 ADC CH1 输入信号 P2.2 (默认)	0	D1 5	1/0	DI		TX1	UART1 TX 信号
P2.2 I/O DI P2.2 STAN 通用数字输入/输出管脚 AIN3 ADC CH3输入 ADC CH3 ADC CH3	9	F 1.5	1/0	01	_	SPI_MISO	SPI_MISO 信号
10						AIN1	ADC CH1 输入信号
AIN3	10	D2 2	1/0	ח		P2.2(默认)	通用数字输入/输出管脚
Reset Pin, 低电平复位,内部强制上拉。 上下		F 2.2	1/0	Di	-	AIN3	ADC CH3输入
RESETN I/O DI PU RESETN I/G I/G RESETN I/G I/G RESETN I/G I/	11	WAKE	-	DO	-	WAKE	唤醒中断信号输出
P2.7 I/O DI - RX0 I/O DI - I/O I/O DI - I/O I/	12	RESETN	I/O	DI	PU	(默认)	部强制上拉。 此信号为 UART 批量下载必 要信号,建议 PCB 上引出该 管脚信号(pad 或 pin)
P2.7							
P2.6 (默认) 通用数字输入/输出管脚	13	P2.7	I/O	DI			UARTO RX (BOOT UART 下载用此 口,需 NRST 信号配合使
TX0						AIN6	ADC CH6 输入
P2.6						P2.6(默认)	通用数字输入/输出管脚
15 RF_SDA - DIO - RF_SDA RF_SDA 信号 16 RF_SCL - DI - RF_SCL RF_SCL信号 17 P0.1 I/O DI - P0.1 (默认) 通用数字输入/输出管脚 18 VDDH P AP - VDDH 芯片电源 2.0 ~ 3.6V 19 P0.3 I/O DI - SPI_CSN SPI CS 信号 LPT_OUT LPTIMER OUT 信号	14	P2.6	I/O	DI	-		(BOOT UART 下载用此 口,需 NRST 信号配合使 用)
16							1
17		_			-		_
18 VDDH P AP - VDDH 芯片电源 2.0 ~ 3.6V 19 P0.3 I/O DI - SPI_CSN SPI CS 信号 LPT_OUT LPTIMER OUT 信号		_			ļ	_	
Po.3	17	PU.1	1/0	וטו	-	PU.1(默认 <i>)</i>	理用剱子输入/输出管脚
19 P0.3 I/O DI - SPI_CSN SPI CS 信号 LPT_OUT LPTIMER OUT 信号	18	VDDH	Р	AP	-	VDDH	芯片电源 2.0 ~ 3.6V
20	19	P0.3	I/O	DI	-	SPI_CSN	SPI CS 信号
	20	VDD	Р	AP	-	VDD	芯片电源 2.0 ~ 3.6V

UM2082F08 用户手册 引脚描述

说明:

A -模拟信号; D -数字信号; I - Input; O - Output; G - Ground; P - Power; PU - pull up 上拉; PD - pull down 下拉; HZ - 高阻状态。

3 处理器

3.1 主要特性

CPU 内核寄存器: ACC, B, PSW, SP, DPS, DPL, DPH, DPL1, DPH1。

3.2 程序状态字寄存器 (PSW)

程序状态字(PSW)寄存器包含了程序状态信息。

3.3 累加器 (ACC)

累加器 ACC 是一个常用的专用寄存器,常用于存放参加运算的操作数及运算结果。

3.4 B 寄存器

在乘除指令中, 会用到 B 寄存器, 在其他指令中, B 寄存器可作为通用暂存寄存器。

3.5 数据指针(DPTR)

数据指针 DPTR 是一个 16 位专用寄存器,其高位字节寄存器用 DPH 表示,低位字节寄存器用 DPL 表示。它们既可以作为一个 16 位寄存器 DPTR 来处理,也可以作为 2 个独立的 8 位寄存器 DPH 和 DPL 来处理。包含双数据指针 DPTR&DPTR1,通过 DPS(bit0)寄存器选择。

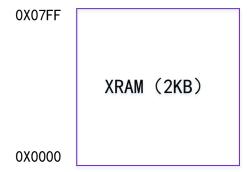
UM2082F08 用户手册 存储器

4 存储器

4.1 主要特性

包括内部 RAM (ISRAM)、外部存储空间。外部存储空间中包括用于存放用户程序的程序空间 EFLASH。

4.2 内部 RAM (ISRAM)


为数据存储提供了 256 个字节的内部 RAM(ISRAM),通过 MOV 指令访问。ISRAM 分为低 128 字节和高 128 个字节。

- 低 128 字节的 ISRAM(地址从 00H 到 7FH)可直接或间接寻址。
- 高 128 字节的 ISRAM(地址从 80H 到 FFH)只能间接寻址。高位 128 字节的 ISRAM 占用的地址空间和 SFR 相同,但在物理上与 SFR 的空间是分离的。当一个指令访问高于地址 7FH 的内部位置时,CPU 可以根据访问的指令类型来区分是访问高位 128 字节数据 ISRAM 还是访问 SFR。

4.3 外部存储空间

为数据存储提供了 2K /1K Bytes 字节的外部存储空间 XRAM,可通过 MOVX 指令直接访问。 外部存储空间的低 2K Bytes 地址可以是外部 XRAM,或者是 EFLASH 空间,两种占用的地址空间相同,可通过 xdata 关键字访问 XRAM 空间。 UM2082F08 用户手册 存储器

外部存储空间其地址映射(低 2K Bytes 为 EFLASH 空间时)如下表所示,用来存储用户程序。

表 4-1: 外部存储空间地址映射表

模块名	地址空间	大小
EFLASH	0x0000—0x8000	32K Bytes
BootLoaderShadow	0x8000—0x8600	1.5K Bytes
Reserved	0x8600—0x9000	2.5K Bytes
NVR0	0x9000——0x9200	512 Bytes
NVR1	0x9200——0x9400	512 Bytes
Reserved	0x9400——0xC000	11K Bytes
IO_IE/LVR_LV/IO_SR	0xC000—0xC400	1K Bytes
SPI	0xC400—0xC800	1K Bytes
LPTIM	0xC800—0xCC00	1K Bytes
I2C	0xCC00—0xD000	1K Bytes
Reserved	0xCC00—0xFFFF	13K Bytes

4.4 程序存储器 EFLASH

EFLASH 的主要特性如下:

- 32K Bytes 程序空间
- Sector 大小 : 512B
- Sector 擦除时间: 5ms
- Byte 编程时间: 7.5us
- 擦写次数: 20,000 次
- 数据保存年限: 100 年@常温
- EFLASH 支持 IAP 功能(In Applicating Programing)

UM2082F08 用户手册 存储器

EFLASH 编程(可通过以下两种方式对 EFLASH 进行读写):

● IAP(In Applicating Programing)模式,用户程序代码可对未使用的 EFLASH 区进行编程,具体参照 <u>EFC</u>章节。

● 通过系统 Boot 程序,通过串口对 EFLASH 编程。

5 系统配置(SFR)

5.1 地址映射

系统 SFR 映射表如下:

表 5-1: 系统 SFR 映射表

	可位寻址				不可位寻址				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8H	CLKCON	P00EN	P10EN	P2OEN	P2DR	ADCVREF	ADCCDR0	ADCCDR1	FFH
F0H	<u>B</u>	P0PU	<u>P1PU</u>	P2PU	P2CS	<u>ADCHL</u>	ADCCSTAT	<u>ADCSPW</u>	F7H
E8H	-	<u>P0IEN</u>	P1IEN	P2IEN	P2OD	ADCCONT	RCHDIV	-	EFH
E0H	<u>ACC</u>	<u>P0IRQ</u>	P1IRQ	P2IRQ	P2PD	P1DR	PRESET0	PRESET1	E7H
D8H	<u>RSTSTAT</u>	<u>SYSDIV</u>	P1PD	<u>P10D</u>	P1CS	LVDCON	PCLK0	PCLK1	DFH
D0H	<u>PSW</u>	<u>OADRL</u>	<u>OADRH</u>	<u>ODATA</u>	<u>OCTRL</u>	<u>POPD</u>	P0OD	P0CS	D7H
C8H	PWM0CON	-	-	PWM0PL	PWM0PH	-	-	-	CFH
C0H	-	-	-	PWM0DL	PWM0DH	·	-	-	C7H
B8H	IEN1	<u>IP1</u>	S0RELH	S1RELH	-	LDOTRIMH	RCHTRIMH	RCHTRIML	BFH
ВОН	-	<u>CLKST</u>	<u>ESTCR</u>	-	ADCGCR2	ADCGCR3	ADCDR0	ADCDR1	В7Н
A8H	<u>IEN0</u>	<u>IP0</u>	SORELL	-	ADCGCR0	ADCGCR1	-	REMAP	AFH
A0H	<u>P2</u>	<u>ous</u>	<u>OINTEN</u>	<u>OINTUS</u>	-	-	<u>OSTATUS</u>	<u>OPSET</u>	A7H
98H	SOCON	S0BUF	-	S1CON	S1BUF	S1RELL	<u>UARTEN</u>	RCLTRIM	9FH
90H	<u>P1</u>	LDOTRIML	<u>DPS</u>	ADCIER	-	-	-	P0DR	97H
88H	TCON	TMOD	<u>TL0</u>	TL1	<u>TH0</u>	<u>TH1</u>	PDSEL	POREN	8FH
80H	<u>P0</u>	<u>SP</u>	DPL	<u>DPH</u>	DPL1	DPH1		<u>PCON</u>	87H
-	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	-

5.2 系统时钟

5.2.1 主要特性

● 内建 48M RC 高频振荡器

(系统最高可以跑 24MHz, 也即内部高频 RC 时钟的 2 分频, 此时需将 flash 读等待时间设置为 1。默认情况下内部高频 RC 时钟 3 分频之后作为系统时钟, 也即 16MHz。)

- 内建 32K RC 低频振荡器
- 内建系统时钟分频器

5.2.2 时钟定义

• RC48M:

表示内部 48M RC 高频振荡器。

• RCH48M:

表示内部 48M RC 高频振荡器经 RCHDIV 分频后的内部高速时钟。

RC32K:

表示内部 32K RC 低频振荡器。

5.2.3 时钟结构图

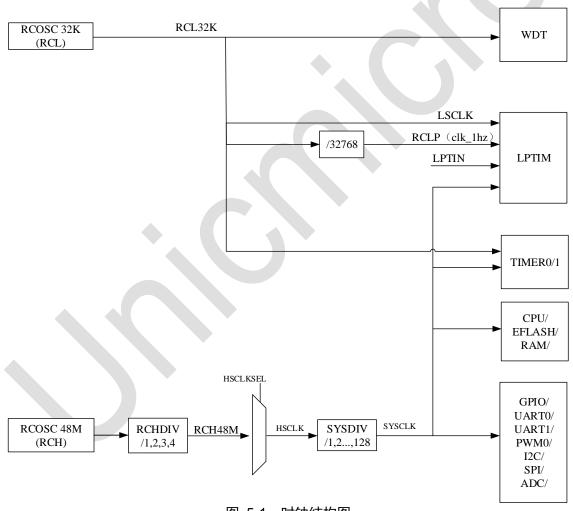


图 5-1: 时钟结构图

UM2082F08 用户手册 系统配置(SFR)

5.3 复位源

5.3.1 主要特性

包含以下复位源:

- PIN RESET
- LVD 复位
- LVR 复位
- 看门狗复位(WDT)
- 上电复位(POR)

注意:

- LVD 复位不会对 LVDCON 寄存器复位。
- LVR 复位与 POR 复位同为全局复位,复位所有的数字逻辑。

5.3.2 看门狗复位

看门狗定时器是一个递减计数器,看门狗定时器使用内部 RC32K 为时钟源,如果要使能看门狗,必须先确保 RC32K 已打开。在掉电模式下,看门狗会在定时器溢出时,复位芯片。

读或者写 RSTSTAT 寄存器均自动清除看门狗计数。

5.3.3 LVD 与 LVR 复位

LVD 为低电压检测单元,可以由软件配置,在外部供电电压低到检测阈值以下时,会产生一个复位。LVD 复位可以复位 CPU 和除 EFC 外的其它外设,不复位 EFC。

LVR 为下电复位单元,其作用域和 POR 相同,为全局复位。当外部供电电压小于 LVR 设置的 阈值电压时,LVR 产生复位,复位整个芯片。

5.3.4 外部复位

外部复位作用域和 POR 相同,为全局复位。当 RESETN IO 为 0,且 RESETN 作为外部复位功能使用时,外部复位有效,复位整个芯片。

5.3.5 寄存器

复位相关寄存器参见 SFR 部分的 RSTSTAT、LVDCON、POREN 等部分。

UM2082F08 用户手册 系统配置(SFR)

5.4 低功耗模式

5.4.1 主要特性

● 支持睡眠模式 (Sleep)、深度睡眠模式 (DeepSleep)、停止模式 (Stop) 三种省电模式

● 中断和复位可以退出三种省电模式

5.4.2 低功耗模式

芯片除正常工作模式外,为了降低芯片的电流消耗,提供三种低功耗模式:休眠(Sleep)模式、深度休眠(Deepsleep)模式和停止(Stop)模式。

在休眠模式下, CPU 停止工作, 保留中断处理功能。其它外设等模块时钟和复位可由软件设置。 休眠模式由软件向特定的 SFR(PCON -> IDLE)写 1 进入, 唤醒由中断触发。

深度休眠模式是休眠模式的升级,在此模式下,CPU 停止运行,高速时钟停止运行,低功耗功能模块(LPTIMER、TIMER0/1、WDT)可以运行。深度休眠模式由软件向特定的 SFR(PCON -> STOP)写 1 进入,唤醒由中断触发。

停止模式下,高速时钟和低速时钟均停止运行,系统无任何运行的时钟,一切外围模块均停止运行。上电复位信号有效,IO 状态保持,IO 中断有效,所有寄存器,RAM 和 CPU 数据保存状态时的功耗;停止模式要先设置 SFR 中 PDSEL 寄存器为 1,然后向 PCON -> STOP 写 1 进入,唤醒只能由外部引脚的电平来唤醒。

5.4.3 低功耗模式表

表 5-2: 低功耗模式表

模式	模式描述	进入条件	退出条件
CPU 大部分休 Sleep 眠;软件可关闭 各模块时钟。	CPU 大部分休	 1.根据需要,关闭各外设模块 时钟,仅留下需要监测中断事	1.CPU 检测到中断或事件发 生。
	件的模块。	2.进入中断服务程序清中断并返回。	
		2. PCON -> IDLE 写 1	3.继续执行后续指令。
	CPU 大部分休	1.根据需要,关闭各外设模块	1. CPU 检测到中断或事件发生。
Deepsleep	眠;高速时钟源 关闭,低速时钟	时钟,仅留下需要监测中断事 件的模块。 	 2.进入中断服务程序清中断并返 回。
	源运行。	2. PCON -> STOP 写 1。	3.继续执行后续指令。

模式	模式描述	进入条件	退出条件
		1.根据需要,设置 IO 唤醒的条	1.外部 IO 唤醒事件到来。
	 关闭系统所有时	件。	2.CPU 检测到 IO 唤醒事件中断 发生。
Stop	钟。	2.设置 SFR 中 PDSEL 寄存器 为 1。	3.进入中断服务程序清中断并返回。
		3. PCON -> STOP 写 1。	4.继续执行后续指令。

5.5 系统寄存器

5.5.1 P0

80H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P0	-	-	-	P0.4	P0.3	P0.2	P0.1	RF_SCL		
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	1		
位编号	位符	号	说明							
7:5	-	-	-							
4	P0.	4	当端口配置为输出状态时: 0: 输出低电平 1: 输出高电平 当端口配置为输入状态时: 读到的是端口状态							
3	P0.	3	当端口配置为输出状态时: 0: 输出低电平 1: 输出高电平 当端口配置为输入状态时: 读到的是端口状态							
2	P0.2 (RE	STEN)	当端口配置为输出状态时:0:输出低电平1:输出高电平当端口配置为输入状态时:							
1	P0.	1	读到的是端口状态 当端口配置为输出状态时: 0: 输出低电平 1: 输出高电平 当端口配置为输入状态时: 读到的是端口状态							
0	RF_S	SCL	当端口配置为 0:输出低。 1:输出高。 1:输出高 当端口配置为 读到的是端	电平 电平 រ 输入状态时						

5.5.2 SP

栈指针 SP 是一个 8 位专用寄存器,在执行 PUSH、各种子程序调用、中断响应等指令时,SP 先加 1,再将数据压栈;执行 POP、RET、RETI 等指令时,数据退出堆栈后 SP 再减 1。堆栈栈顶可以是片上内部 RAM(00H-FFH)的任意地址,系统复位后,SP 初始化为 07H,使得堆栈事实上由 08H 地址开始。

81H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SP		SP									
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	0	0	1	1	1			
位编号	位符号	说明	说明								
7:0	栈指针 SP 寄存器。可通过写操作更新 SP 栈指针的值。在执行 PUSH、各										

5.5.3 **DPTR**

数据指针 DPTR 是一个 16 位专用寄存器,其高位字节寄存器用 DPH 表示,低位字节寄存器用 DPL 表示。它们既可以作为一个 16 位寄存器 DPTR 来处理,也可以作为 2 个独立的 8 位寄存器 DPH 和 DPL 来处理。包含双数据指针 DPTR&DPTR1,通过 DPS(bit0)寄存器选择。

82H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
DPL		DPL							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7:0	DPL	数据指	数据指针 DPTR0 的低 8 位。						

83H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
DPH			DPH						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7:0	DPH	数据指	数据指针 DPTR0 的高 8 位。						

84H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
DPL1		DPL1							
读/写									
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							

7:0	DPL1	数据指	数据指针 DPTR1 的低 8 位。					
85H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPH1				DPI	1 1			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:0	DPH1	数据指	针 DPTR1 的]高8位。				

5.5.4 PCON

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
PCON	-	-	-	1	•	-	STOP	IDLE	
读/写	读	读	读	读	读	读	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7:2	-	-					•		
1	STOP	写 1, ì	写 1, 进入 Stop Mode 或 DeepSleep Mode, 读一直返回 0。						
0	IDLE	写 1, ì	∄入 Sleep N	Mode,读一	-直返回 0。				

5.5.5 TCON

0011	D:47	D:+C	D:+E	Dit4	D:40	Dito	Dit4	D:tO		
88H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
TCON	TF1		TR1	T1CLKS	TF0	-	TR0	T0CLKS		
读/写	读/写	读	读/写	读/写	读/写	读	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7	TF1		定时器 1 溢出标志: 0: 无溢出(必须软件清 0)							
			溢出(硬件置位,软件写 1 无效,写 0 清 0)							
6	-	-								
			使能位:							
5	TR1		定时器 1							
			定时器 1	V# 14 17						
			计数时钟		11 51 30 = 14					
4	T1CLKS			三为定时器 1						
		1:选择	RC32K作	为定时器 1	的计数时钟	1				
		定时器() 溢出标志	:						
3	TF0	0: 无溢	出(必须软	(件清 0)						
		1: 溢出	(硬件置位	江,软件写 1	无效,写() 清 0)				
2	-	-	-							
		定时器() 使能位:							
1	TR0	0: 停止	定时器 0							
		1: 开始	定时器 0							

		定时器 0 计数时钟选择位:
0	T0CLKS	0:选择系统时钟作为定时器 0 的计数时钟
		1:选择 RC32K 作为定时器 0 的计数时钟

5.5.6 TMOD

89H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMOI	D -	-	- T1PS T0F					
读/写	; -	-	- 读/写 读/写 ì					读/写
复位位	直 -	-	0	0	-	-	0	0
位编号	位符号				说明			
7:6	-	-						
5:4	T1PS[1:0]	定时器 1 00: 1/1 01: 1/8 10: 1/64	预分频比划 1	选择位:				

3:2 - - 定时器 0 预分频比选择位: 00: 1/1 1:0 TOPS[1:0] 01: 1/8 10: 1/64 11: 1/256

11: 1/256

5.5.7 TL0

8AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
TL0		TLO								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:0	TL0	Timer0	低8位 [7:	0]						

5.5.8 TL1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	TL1									
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
0	0	0	0	0	0	0	0			
位符号	说明									
TL1	Timer1	低 8 位 [7:	0]							
	读/写 0 位符号	读/写 读/写 0 0 位符号 说明	读/写 读/写 0 0 0 0 位符号 说明	读/写 读/写 读/写 0 0 0 位符号 说明	TL1 读/写 读/写 读/写 读/写 0 0 0 0 位符号 说明	TL1 读/写 读/写 读/写 读/写 读/写 0 0 0 0 0 位符号 说明	TL1 读/写 读/写 读/写 读/写 读/写 读/写 0 0 0 0 0 位符号 说明			

5.5.9 TH0

8CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
TH0		TH0								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:0	TH0	Timer0 高 8 位 [15:8]								

5.5.10 TH1

8DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TH1				7	⁻ H1			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:0	TH1	Timer1	高8位 [15	:8]				

5.5.11 PDSEL

8EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDSEL	-	•	•	-	-	1	-	PDSEL
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:1	-							
0	PDSEL	1: STO STOP 标 0: STO	模式,系统/ P 模式禁止	€。当此位为 听有时钟源∰ こ。当此位为	全部关掉。 10,向 PC(ON 的 STOP ON 的 STOP ī,RCH 时钟	位写 1,将	

5.5.12 **POREN**

8FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
POREN	-	-	-		L۱	/RS		LVR_ENB
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	1	0
位编号	位符号	说明						
7:5	-	-			•		•	

		LVR 检测点电压	设置:				
		LVRS	LVR point	LVRS	LVR point		
		0000	1.65V	1000	2.45V		
		0001	1.75V	1001	2.55V		
		0010	1.85V	1010	2.65V		
4:1	4:1 LVRS	0011	1.95V	1011	2.75V		
		0100	2.05V	1100	2.85V		
		0101	2.15V	1101	2.95V		
		0110	2.25V	1110	3.05V		
		0111	2.35V	1111	3.15V		
0	LVR_ENB	掉电复位使能信号: 0: 掉电复位使能; 1: 关闭掉电复位功能;					

5.5.13 P1

90H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1	-	-	P1.5	P1.4	P1.3	-	-	P1.0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值	-	-	0	0	0	0	0	0
位编号	位符号	说明						
7:6	-	-						
		0: 输	2 置为输出 出低电平	伏态时 :				
5	P1.5		出高电平					
			尼置为输入 为是端口状剂	-				
		当端口酉	己置为输出	状态时:				
		0: 输	出低电平					
4	P1.4		出高电平					
			尼置为输入					
		_	り是端口状					
			尼置为输出	伏态时:				
			出低电平					
3	P1.3		出高电平	1 % -t 1				
			置为输入					
		读到印	的是端口状?	<u> </u>				
2:1	-	-		16-41				
			2置为输出	伏 态时:				
	54.0		出低电平					
0	P1.0		出高电平					
			尼置为输入					
		读到的	り 是端口状	<u> </u>				

5.5.14 LDOTRIML

91H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LDOTRIM	1L -	-	VADJ_S	VADJ_STANDBY		VTRM_STANDBY		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	1	0	1	1	1
位编号	位符号	说明						
7:6	-	-						
5:4	VADJ_STANI	DBY STAN	STANDBY 模式下电压中心值设置					
3:0	VTRM_STAN	DBY STAN	DBY 模式下	TRIM 值				

5.5.15 DPS

92H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPS	-	-	-	-	-	-	-	DPS
读/写	读	读	读	读	读	读	读	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:1	-	-						
0	DPS		指针选择 指针选择					

5.5.16 ADCIER

93H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCIER	-	_	1	-	-	ı	-	RXINTEN		
读/写	读	读	读	读	读	读	读	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:1	-	-								
		接收器 BUF 缓存有效数据中断使能位:								
0	0 RXINTEN 1: 启用中断									
		0: 未启	用中断							

5.5.17 P0DR

97H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0DR	-	-	-	P0_4DR	P0_3DR	P0_2DR	P0_1DR	RF_SCLDR
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:5	-	-		•				

4	P0_4DR	端口 P0_4 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力
3	P0_3DR	端口 P0_3 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力
2	P0_2DR	端口 P0_2 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力
1	P0_1DR	端口 P0_1 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力
0	RF_SCLDR	端口 RF_SCL 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力

5.5.18 S0CON

98H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
S0CON	SM0	SM1	SM20	REN0	TB80	RB80	TI0	RI0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明							
	SM0	UARTO	UARTO 模式选择控制位:						
7		SM0	SM1	MODE	描述	Baud Rate			
		0	0	0	Shift register	SYSCLK/12			
		0	1	1	8-bit UART	可配置			
6	SM1	1	0	2	9-bit UART	SYSCLK/16			
		1	1	3	9-bit UART	可配置			
5	SM20	0: 关闭	用多机道	通讯使能控 通讯功能 通讯功能只	空制位: R接收 RB80 = 1	的 9 位数据			
4	REN0	0: 不分	ὰ许串口	t许使能控 10接收)数据接收					
3	TB80	UARTO) Mode	2,3第9	位发送数据位				
2	RB80	UARTO) Mode	2,3第9	位接收数据位				
1	TIO			P断标志位 成后,硬	江: 件置位 ,必 须由	软件清 0			
0	RI0			P断标志位 据接收,	立: 硬件置位,必须	由软件清 0			

5.5.19 S0BUF

99H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
S0BUF	S0BUF.7	S0BUF.6	S0BUF.5	S0BUF.4	S0BUF.3	S0BUF.2	S0BUF.1	S0BUF.0	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7:0	S0BUF[7:0] 读 S0Bl	. —	: RT0 接收到 RT0 数据发					

5.5.20 S1CON

9BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
S1CON	SM	-	SM21	REN1	TB81	RB81	TI1	RI1
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
	UART1 模式选择控制寄存位:							
		SM	Mode │ 描述	Ż	Baud Rat	e		

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	业付亏	一						
		UART1 模式选择控制寄存位:						
		SM Mode 描述 Baud Rate						
7	SM	0 A 9-bit UART 可配置						
		1 B 8-bit UART 可配置						
6	-	-						
		UART1 多机通讯使能控制位:						
5	SM21	0: 关闭多机通讯功能						
		1: 使能多机通讯功能,只接收 RB81= 1 的 9 位数据						
		UART1 接收允许使能控制位:						
4	REN1	0: 不允许串口 1 接收						
		1: 允许串口 1 数据接收						
3	TB81	UART1 第 9 位发送数据位						
2	RB81	UART1 第 9 位接收数据位						
1	TI1	UART1 发送中断标志位:						
<u> </u>	NI	当发送数据完成后,硬件置位,必须由软件清 0						
0	RI1	UART1 接收中断标志位:						
	KI1	当完成一次数据接收,硬件置位,必须由软件清 0						

5.5.21 S1BUF

9CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
S1BUF	S1BUF.7	S1BUF.6	S1BUF.5	S1BUF.4	S1BUF.3	S1BUF.2	S1BUF.1	S1BUF.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0	S1BUF[7:0]	UART1 数据寄存器: 读 S1BUF 返回 UART1 接收到的数据 写 S1BUF 启动 UART1 数据发送

5.5.22 S1REL

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
S1RELL	S1RELL.	S1RELL.	S1RELL.	S1RELL.	S1RELL.	S1RELL.	S1RE	S1REL
(9DH)	7	6	5	4	3	2	LL.1	L.0
复位值	1	1	1	0	0	1	1	0
S1REL H (BBH)	ı	ı	ı	1	ı	-	S1RE LH.1	S1REL H.0
复位值		-	-	-	-		1	1
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	S1RELL[7:0]	UARTO Mode 波特率配置寄存器:
1:0	S1RELH[1:0]	S1RELH +S1RELL 构成波特率设置 S1REL[9:0] Baud Rate =

5.5.23 **UARTEN**

9EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
UARTEN	OUT	SEL	OUTEN	-	-	-	UART1EN	UART0EN		
读/写	读/写	读/写	读/写	读	读	读	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:6	OUTSEL	10: 系 01: R0	11:保留 10:系统时钟输出 01:RCL32K 时钟输出 00:RCHDIV 时钟输出							
5	OUTEN	1: P0_	出使能 : 3 作为 CLK 3 不作为 C							
4:2	-	-								
1	UART1EN	0: 关闭	使能控制位] UART1 功 F UART1 功	能,P1.4,			1,TX1 功能			
0	UART0EN	0: 关闭	使能控制位] UART0 功 F UART0 功	能,P2.6,),RX0 功能			

5.5.24 RCLTRIM

9FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RCLTRIM	-	RT	RTRIM		S				
读/写	读	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	1	0	1	1	1	1	
位编号	位符号	说明							
7	-	-							
6:5	RTRIM	片内低	片内低频 RCL 修调值						
4:0	S	片内低	频 RCL 修订	間値					

5.5.25 P2

A0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
P2	P2.7	P2.6	RF_SDA	-	WAKE	P2.2	-	-	
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读	
复位值	0	0	1	0	0	1	0	0	
445									
位编号	位符	_	<u> </u>	+A11145-+-n-4					
7	P2.	7	当端口配置为 0: 输出低 1: 输出高 当端口配置为 读到的是端	电平 电平 3输入状态时					
6	P2.	6	当端口配置为 0: 输出低 1: 输出高 当端口配置为 读到的是端	电平 电平 3输入状态时					
5	RF_SDA		当端口配置为 0:输出低 1:输出高 当端口配置为 读到的是端	电平 电平 3输入状态时					
4	-		-						
3	WAKE		当端口配置为输出状态时: 0: 输出低电平 1: 输出高电平 当端口配置为输入状态时: 读到的是端口状态						
2	P2.	2	当端口配置为 0: 输出低 1: 输出高 当端口配置为 读到的是端	7 输出状态时 电平 电平 输入状态时					

 UM2082F08 用户手册
 系统配置(SFR)

1.0 - -	1:0	-	-
-------------	-----	---	---

5.5.26 OUS

A1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
OUS	-	-	-			OUS			
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写	
复位值	-	-	-	0	0	1	1	1	
位编号	位符号		说明						
7:5	-	-	1						
4:0	OU	S 1		直应为: (系统	时钟频率/2)- 此寄存器的值				

5.5.27 **OINTEN**

A2H	Bit7	Bit6	Е	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OINTEN	-	-	VDDL	.OWEN	WPOGERREN	-		-	PRODONEEN
读/写	读	读	词	[/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0		0	0	0	0	0	0
位编号	位符号 说明								
7:6									
5	VI	DDLOW	EN	1: LVD 低电压中断使能 0: LVD 低电压中断禁止					
4	I WPOGERREN I				错误中断使能 错误中断禁止				
3:1		-		-					
0	PR	ODONI	EEN		完成中断使能 '完成中断禁止				

5.5.28 OINTUS

АЗН	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
OINTUS		-	VDD_LOW	WPOGERR		-	-	PRODONE	
读/写	读	读	读	读	读	读	读	读	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号		说明						
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	14.14	7	96-73						
7:6	- 12-10	<u>-</u>	-						

4	WPOGERR	1:操作错误中断状态位 0:操作错误中断状态位 写 1 清 0
3:1	-	-
0	PRODONE	1: 擦写完成中断状态位 0: 擦写完成中断状态位 写 1 清 0

5.5.29 OSTATUS

A6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
OSTATUS		,	-		LVDLOW	-	·	EFCREADY	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	1	
位编号	位符号 说明								
7:4									
3	LVDL	.OW	1: LVD	0:LVD检测电压正常 1:LVD检测电压过低 此位反应当前 LVD 检测的实时状态。					
2:1	-		-						
0	EFCRI	EADY	EFlash状态指示位。该反映EFlash工作的状态: 1:EFlash状态空闲 0:EFlash 状态忙						

5.5.30 OPSET

A7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
OPSET	READM1	READM0	RDWAIT			CHIPSERSET	PAGESER SET	PAGE WRSET		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	1		
位编号	位符号		位符号 说明							
7	READM1		此位不	可写 1,	保留为 0					
6	REA	READMO 此位不可写 1,保留为 0								
5:3	RDV	VAIT	读等待时间设置							
2	CHIPS	ERSET	1: CHIP 擦除模式使能 0: CHIP 擦除模式关闭							
1	PAGESERSET		1: PAGE 擦除模式使能 0: PAGE 擦除模式关闭							
0	PAGE\	WRSET	1: PAGE 写模式使能 0: PAGE 写模式关闭							

5.5.31 IEN0

A8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
IEN0	EA	EADC	EPWM	ES0	ET1	ES1	ET0	EX0				
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写				
复位值	0	0	0	0	0	0	0	0				
位编号	位符	号	说明									
			总中断开关:									
7	EA			0: 关闭中断								
			1: 打开中断									
				能开关:								
6	EAD	C	0: 关闭中断									
			1: 打开中断									
			PWM 中断使	能开关:								
5	EPW	/M	0:关闭中断									
			1: 打开中断									
			UART0 中断f	使能开关:								
4	ES	0	0: 关闭中断									
			1: 打开中断									
			Timer1 中断的	吏能开关:								
3	ET	1	0: 关闭中断									
			1: 打开中断									
			UART1 中断f	使能开关:	· ·							
2	ES	1	0: 关闭中断									
			1: 打开中断									
			Timer0 中断的	吏能开关:								
1	ET	0	0: 关闭中断									
			1: 打开中断									

5.5.32 IP

EX0

0

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IP0(A9H)		-	IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0
IP1(B9H)	-	-	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

外部中断初级使能开关:

0: 关闭中断 1: 打开中断

每个中断源都可被单独设置为 4 个中断优先级之一, 分别通过 IP0 和 IP1 的相应位来设置实现,

具体设置见下表:

IP1.x	IP0.x	PriorityLevel
0	0	Level0 (lowest)
0	1	Level1
1	0	Level2

	1	
1	1	Level3 (highest)

Bit	对应中断
IP1.0, 1P0.0	外部中断 0EX0 和 ADC 中断
IP1.1, 1P0.1	定时器 0 中断 ET0 和 SPI 中断
IP1.2, 1P0.2	串口 1 中断 ES1
IP1.3, 1P0.3	定时器 1 中断 ET1 和 EFC 中断
IP1.4, 1P0.4	串口 0 中断 ESO 和 LPTIMER 中断
IP1.5, 1P0.5	PWM 中断 EPWM 和 I2C 中断

5.5.33 SOREL

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
S0RELL(AAH)	S0RELL.7	S0RELL.6	S0RELL.5	S0RELL.4	S0RELL.3	S0RELL.2	S0RELL.1	S0RELL.0		
复位值	1	1	1	0	0	1	1	0		
S0RELH(BAH)	-	-	-	-	-	-	S0RELH.1	S0RELH.0		
复位值	-	1	1	-	-	-	1	1		
读/写	读/写	读/写	读/写 读/写 读/写 读/写 读/写 读/写							
位编号	位符号				说明					
7:0			JART0 Mode1,3 波特率配置寄存器: S0RELH +S0RELL 构成波特率设置 S0REL[9:0]							
1:0	S0RELH[1:0]			K.		[]				

5.5.34 ADCGCR0

ACH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ADCGCR0	-	ADCCLKSEL	ADCRCEN	-	-	-	ADCCUNSET	ADCEN	
读/写	读	读/写	读/写	读	读	读	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7	-	-							
6	ADCCLKSE	L 0: ADC	中源选择信号 内部时钟分 付钟发生器?	频器产生		(相)			
5	ADCRCE	√ 0: 禁止ì	居寄存器(A 卖取 ADC 数 卖取清除 AD	[据寄存器	的清除	能:			
4:2	-	-	-						
1	ADCCUNS		设置位: 工作在连续 工作在单次						

		ADC 控制器使能信号:
0	ADCEN	0: 模块禁用
		1:模块启用

5.5.35 ADCGCR1

<u>-</u>										
ADH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCGCR1	-	-	1	-	ı	ADCSTEN	ADCRST	ADCPDEN		
读/写	读	读	读	读	读	读/写	读/写	读/写		
复位值	0	0	0 0 0 0 0 1 1							
位编号	位符号	说明								
7:3	-	-								
2	ADCSTEN	当信号具有	ADC 转换启动使能信号。 当信号具有从低到高的转换时,ADC 转换开始。 当信号具有从高到低的转换时,ADC 转换操作完成。当 ADCEN=0 时,它将被清							
1	ADCRST	ADC 内部数 1:SAR AD 0:SAR AD		信号。						
0	ADCPDEN	0: SAR AD	卓电使能信号 OC 上电(pc OC 掉电(pc	ower on)						

5.5.36 **REMAP**

AFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
REMAP	-	-	•		1	REMAP_FLAG	REMAP_IM	REMAP	
读/写	读/写	读/写	/写 读/写 读/写 读/写 读/写 读/写 读/写						
复位值	0	0	0	0	0	0	1	1	
位编号	位符号	说明							
7:3	-	-							
2	REMAP_FLA	系统是否发生 REMAP 的标志。 REMAP_FLAG 1: 系统发生 REMAP; 0: 系统未发生 REMAP							
1	REMAP_IM	写 0,	地址直接统	发生 REM	AP。				
0	REMAP	写 0 , 动。	地址发生	REMAP,	并产生系:	统复位,复位后	从 eFlash 的	main 区启	

UM2082F08 用户手册 系统配置(SFR)

5.5.37 CLKST

B1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKST	WACK	DELAY		-	RCHS	STAB	RCL	STAB
读写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	0	0	0	0	0	0	0
		•	•	•		•	•	
位编号	位符号	를 i	胡					
7:6	WACKDE	ELAY 0 1	英醒时间延时 0: 64 个系统 1: 128 个系统 0: 245 个系约 1: 384 个系约	时钟周期 充时钟周期 充时钟周期				
5:4	-	-						
3:2	RCHST	AB 0 1	CH 稳定时间 0: 1 个 RCH 1: 4 个 RCH 0: 32 个 RCH 1: 256 个 RCH	32K 时钟周期 32K 时钟周期 H32K 时钟周	朝]期	-\		
1:0	RCLST	F 0	CL 稳定时间 0: 1 个 RCL3 1: 4 个 RCL3	设定: 32K 时钟周期	JJ			

10: 32 个 RCL32K 时钟周期 11: 256 个 RCL32K 时钟周期

5.5.38 ESTCR

B2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ESTCR	-	-	ERSTEN ERSTLVT ERSTL						
读/写	读	读	读	读	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	1	0	0	0	
位编号	位符号	说明							
业细亏	121寸亏	し							
7:4	-	-							
3	ERSTEN	1: 外部	外部复位引脚使能位: 1:外部复位功能使能):外部复位功能禁止						
2:1	ERSTLV	11: 1 ² 10: 8 ² 01: 16	外部复位滤波时间设置: 11:1 个 RCL32K 时钟周期 10:8 个 RCL32K 时钟周期 01:16 个 RCL32K 时钟周期 00:29 个 RCL32K 时钟周期						
0	ERSTLVE	NI I	『复位滤波 像 『复位滤波						

 UM2082F08 用户手册
 系统配置(SFR)

5.5.39 ADCGCR2

B4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCGCR2	-	-	-	-		СН	EN	
读/写	读	读	读	读	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:4	ı	-						
3:0	CHEN	0000: 关闭 0001: 关闭 0001: 通道 0010: 通道 0011: 保通道 0101: 强通道 0110: 通道 0111: 通道	I通道 [0 [1 [3 [5 [6	可模数转换。 源固定为内				

5.5.40 ADCGCR3

В5Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCGCR3	-	-	-	-	-	-	-	SAMPNEG
读/写	读	读	读	读	读	读	读	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:1	-	1						
0	ADC 数据在 EOC 信号的边沿采样选择:							

5.5.41 ADCDR0

В6Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
ADCDR0		CHDATAL									
读/写	读	读	读	读	读	读	读	读			
复位值	0	0	0	0	0	0	0	0			
位编号	位符号	号(说明)									
7:0	CHDATAL	A/D 通道接	收数据低位:	寄存器							

5.5.42 ADCDR1

В7Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCDR1	CHDATAV	-	-	-		CHD	ATAH			
读/写	读	读	读	读	读	读	读	读		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7	CHDATA	V ADCRCE 0:数据:	数据有效信号。信号在获取有效数据后激活,在 ADCEN = 0 时清除,或在ADCEN = 1 时由软件读取 ADCDR0/1 寄存器后清除。 : 数据无效 : 数据有效							
6:4	_	-								
3:0	CHDATA	H A/D 诵道	接收数据高	京位寄存器						

5.5.43 IEN1

B8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
IEN1	-	-	I2CINTEN	2CINTEN LPTIMINTEN EFCINTEN - SPIINTEN						
读/写	读	读	读/写	读/写	读/写	读	读/写	读		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	·								
7:6	-	-								
5	I2CINTEN	1: I2C 中I	2C 中断使能: : I2C 中断使能 : I2C 中断关闭							
4	LPTIMINTEN	LPTIMER 中断使能: IN 1: LPTIMER 中断使能 0: LPTIMER 中断关闭								
3	EFCINTEN	1: EFC 中	EFC 中断使能: 1: EFC 中断使能 D: EFC 中断关闭							
2	-	-				·		·		
1	SPIINTEN	1: SPI 中I	PI 中断使能: : SPI 中断使能 : SPI 中断关闭							
0	-	-								

5.5.44 LDOTRIMH

BDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LDOTRIMH	ı	VADJ	_ACT	VTRM_ACT			Γ		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	1	1	1	0	0	0	0	

位编号	位符号	说明
7	-	-
6:5	VADJ_ACT	ACTIVE 模式下电压中心值设置
4:0	VTRM_ACT	ACTIVE 模式下 TRIM 值

5.5.45 RCHTRIMH

BEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
RCHTRIME	1	RCHTRIMH									
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	1	1	0	1	1			
位编号	位编号 位符号 说明										
7:0 RCHTRIMH 片内高频 RCH 频率修调值高位											

5.5.46 RCHTRIML

BFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
RCHTRIML	-	RCHTRIML									
读/写	读	读	读	读	读	读	读/写	读/写			
复位值	0	0	0	1	1						
位编号	位符号	· 说明									
7:2	-	-	-								
1:0	1:0 RCHTRIML 片内高频 RCH 频率修调值低位										

5.5.47 PWM0PL/H

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
PWM0PL(0	CBH)		PWM0P[7:0]										
PWM0PH(CCH)		PWM0P[15:8]										
读/写 读/写 读				读/写	读/写	读/写	读/写	读/写	读/写				
复位值	Ī	0	0	0	0	0	0	0	0				
位编号	1	位符号	说明										
15:0	PWI	10P[15:0] PWM0 数据寄存器											

注意:修改寄存器 PWM0PH 将使得 PWM0 的输出在下一个周期生效。如果用户需要修改 PWM 周期,先要修改 PWM0PL,再修改 PWM0PH。

5.5.48 PWM0DL/H

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
PWM0DL(C3H)		PWM0D[7:0]										
PWM0DH(C4H)		PWM0D[15:8]										
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写				
复位值	0	0	0	0	0	0	0	0				

位编号	位符号	说明
15:0	PWM0D[15:0]	PWM0占空比控制,控制PWM0波形占空比的输出时间。
		详细 PWM 输出时序,见 <u>PWM 输出时序</u> 章节。

注意:修改寄存器 PWM0DH 将使得 PWM0 的输出在下一个周期生效。如果用户需要修改 PWM 占空比,要先修改 PWM0DL,再修改 PWM0DH。

5.5.49 **PWM0CON**

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
PWM0CON(C8H)	PWM0EN	PWM0S	/MOS PWM0IE PWM0IF PWM0								
读/写	读/写	读/写 读/写 读/写 读/写 读/写									
复位值	0	0	-	-	-	0	0	0			
位编号	位符号	说明									
		PWM0 使能:									
7	PWM0EN	0: 禁止 F	PWM0 槙	莫块							
		1: 使能 F	1: 使能 PWM0 模块								
		PWM0 输出模式:									
6	PWM0S	0:PWM0 占空比期间输出高电平,占空比溢出后输出低电平									
		1: PWM) 占空比	期间输	出低电子	P,占空比溢	益出后输出高	高电平			
5:3	-	-									
		PWM0中									
2	PWM0IE	0: 禁止 F	PWM0 F	中断							
		1: 允许 F	PWM0 F	上断							
		PWM0中	断标志值	立:							
1	PWM0IF	0: PWM	3周期计	数器没	有溢出						
		1: PWM0 周期计数器溢出,硬件置位,软件写 1 无效,写 0 清 0									
		PWMO 引脚输出控制位:									
0	PWM0SS	0: PWM	0: PWM0 输出禁止,用作 I/O 功能								
		1: PWM	3 输出允	:许 <u> </u>							

5.5.50 PSW

D0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
PSW	CY	AC	AC F0 RS1 RS0 OV F1 P								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读			
复位值	0	0	0	0	0	0	0	0			
位编号	号 位符号 说明										
7	进位标志: 7 CY 当最后一次算术操作产生进位(加法)或借位(减法)时,该位置 1,其它算 术操作将其清 0。										
6	AC	辅助进位标志: 当最后一次算术操作向高半字节有进位(加法)或借位(减法)时,该位置 1. 其它算术操作将其清 0。									

 UM2082F08 用户手册
 系统配置(SFR)

5	F0	用户标志 0: 这是一个可位寻址、用于软件控制的通用标志位。
4:3	RS[1:0]	RS1-RS0: 寄存器区选择: 00: 页 0 (映射到 00H-07H) 01: 页 1 (映射到 08H-0FH) 10: 页 2 (映射到 10H-17H) 11: 页 3 (映射到 18H-1FH)
1	F1	用户标志 1: 这是一个可位寻址、用于软件控制的通用标志位
0	Р	奇偶校验位: 0: 累加器中8个位的和为偶数 1: 累加器中8个位的和为奇数

5.5.51 OADRL/H

D1H~D2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
OADRL	EFLASH 烧录地址低位[7:0]										
OADRH		EFLASH 烧录地址高位[15:8]									
读/写		读/写									
复位值	1	1	1	1	1	1	1	1			

5.5.52 ODATA

D3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ODATA		EFLASH 烧录数据[7:0]							
读/写		读/写							
复位值	1	1	1	1	1	1	1	1	

5.5.53 OCTRL

D4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OCTRL	VPPO_EN	PUMP_EN	PUMP_SEL<2:0>			-	PUMP_OK	PUMP_6O5V
读/写	读/写	读/写	读/写			•	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	VPPO_EN	EFLASH IAP 编程启动控制信号: 0: 关闭(硬件自动清 0) 1: 启动 EFLASH 编程(软件写 1 启动 EFLASH IAP 编程,硬件完成 IAP 后清 0) 此 bit 置位后, CPU 将处在 Idle 状态,待 IAP 完成后恢复

6		0:关闭内部 P	UMP 模块使能控制位: : 关闭内部 PUMP 功能 : 打开内部 PUMP 功能							
			Pump 输出电压选择控制位:							
		PUMP_SEL	VPP(V)	PUMP_SEL	VPP(V)					
		000	6.5	100	7.5					
5:3	PUMP_SEL[2:0]	001	6.75	101	7.75					
		010	7.0	110	8					
		011	7.25	111	8.25					
		建议实际 IAP 编程设置 PUMP_SEL<2:0> = 001,6.75V								
2	-	-								
		VPP 输出电压	标志 1:							
1	PUMP_OK	0: VPP OUT	电压低于 F	PUMP_SEL 设	定电压					
		1: VPP OUT	电压高于 F	PUMP_SEL 设	定电压					
		VPP 输出电压标志 2:								
0	_	1: VPP OUT	电压高于 6	6.5V						
		0: VPP OUT	电压低于 6	6.5V						

5.5.54 P0PD

D5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
P0PD	-	-	-	P0_4PD	P0_3PD	P0_2PD	P0_1PD	RF_SCLPD			
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	0	0	0	0	0			
位编号	位符号	说明									
7:5	-	•									
4	P0_4PD	端口 P0_4 0:禁止 1:使能									
3	P0_3PD	端口 P0_3 0:禁止 1:使能	端口 P0_3 下拉配置寄存器: 0:禁止								
2		端口 P0_2 0:禁止 1:使能	端口 P0_2 下拉配置寄存器: D: 禁止								
1		端口 P0_1 0:禁止 1:使能	下拉配置寄	存器:							
0	RF_SCLPD		CL 下拉配置	置寄存器:							

5.5.55 P0OD

D6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P0OD	-	-	-	P0_4OD	P0_3OD	P0_20D	P0_10D	RF_SCLOD		
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:5	-	-								
4		端口 P0_4 0:禁止 1:使能								
3		端口 P0_3 0:禁止 1:使能	端口 P0_3 开漏输出配置寄存器:):禁止							
2		端口 P0_2 0:禁止 1:使能	端口 P0_2 开漏输出配置寄存器: D: 禁止							
1		端口 P0_1 0:禁止 1:使能	开漏输出配	置寄存器:						
0	RF_SCLOD		CL 开漏输b	出配置寄存制	뚬:					

5.5.56 POCS

D7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P0CS	_	-	-	P0_4CS	P0_3CS	P0_2CS	P0_1CS	RF_SCLCS		
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	1	1	1	1	1		
位编号	位符号	说明								
7:5	-	-								
4	P0_4CS	0: Schmitt	端口 P0_4 输入类型配置寄存器: D: Schmitt input buffer I: CMOS input buffer							
3	P0_3CS	0: Schmitt	端口 P0_3 输入类型配置寄存器: D: Schmitt input buffer 1: CMOS input buffer							
2	P0_2CS	0: Schmitt	端口 P0_2 输入类型配置寄存器: 0:Schmitt input buffer 1:CMOS input buffer							
1	P0_1CS	0: Schmitt	输入类型配 input buffe input buffer	r						

UM2082F08 用户手册 系统配置(SFR)

	端口 RF_SCL 输入类型配置寄存器:
0	RF_SCLCS0: Schmitt input buffer
	1: CMOS input buffer

5.5.57 RSTSTAT

D8	Н	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0								
RSTS	TAT	WDOF	WDEN	LVDRF	PORF	ERSTF		WDT[2:0]			
读/:	写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值(POR)	0	0	X	1	Х	0	0	0		
复位值(WDT)	1	0	Х	Х	Х	0	0	0		
复位值	(PIN)	Х	0	Х	Х	1	0	0	0		
复位值	(LVD)	Х	0	1	Х	Х	0	0	0		
位编号	位名	符号	说明								
			看门狗溢出	出标志位::	看门狗溢出	时由硬件置	1,可由辖	次件或上电	复位清 0		
7	WD	OF		: WDT 溢出							
			1: 发生 V								
			看门狗使的								
6	WD	EN	0: 关闭看								
		1: 使能看门狗功能									
			LVD 复位	标志位:LV	/D 复位后由	· ·硬件置 1,	中软件清	0			
5	LVD	RF		生低电压复		1,2(1,2,1,	ш жиж				
			1: 发生过低电压复位								
				- I I I	1 = 0 ===	(A)	11 til sele a				
_	D0	DE				件置 1,由	软件清 0				
4	PO	KF	0: 没有发生上电复位 1: 发生过上电复位								
					15. 21500年	公丘里 4	山松供注 0	<u> </u>			
3	ERS	STE		w复过你忘了 生引脚复位		位后置 1,	田扒什有U				
3	LIX	311	0: 及有及 1: 发生过		L.						
				1月期控制位 1月期控制位	7.						
				出周期最小位		<u>.</u>					
			.—								
			001:溢出周期最小值= 1024ms 010:溢出周期最小值= 256ms								
2:0	WDT	12:01	011: 溢出周期最小值= 128ms								
				出周期最小值							
				品期最小值 1							
				周期最小值							
			111: 溢出	周期最小值	i = 1ms						

5.5.58 SYSDIV

D9H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYSDIV	1	1	-	-	1	SYSDIV[2]	SYSDIV[1]	SYSDIV[0]
读/写	读	读	读	读	读	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:3	-	-
2:0	SYSDIV[1:0]	高频时钟(经过 RCHDIV 分频后 RCH48M)分频控制,分频后输出作为系统时钟: 000: HSCLK 不分频 001: HSCLK /2 分频输出 010: HSCLK /4 分频输出 011: HSCLK /8 分频输出 100: HSCLK /16 分频输出 101: HSCLK /32 分频输出 111: HSCLK /64 分频输出

5.5.59 P1PD

DAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P1PD	-	-	P1_5PD	P1_4PD	P1_3PD	-	_	P1_0PD		
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:6	-	_								
5	P1_5PD	端口 P1_5 0:禁止 1:使能								
4	P1_4PD	端口 P1_4 0:禁止 1:使能	端口 P1_4 下拉配置寄存器:):禁止							
3	P1_3PD	端口 P1_3 0:禁止 1:使能	下拉配置寄	存器:						
2:1	-	-								
0		端口 P1_0 0:禁止 1:使能	下拉配置寄	存器:						

5.5.60 P1OD

DBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1OD	-	-	P1_5OD	P1_40D	P1_3OD	-	-	P1_00D
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						

7:6	-	-
5		端口 P1_5 开漏输出配置寄存器: 0:禁止 1:使能
4		端口 P1_4 开漏输出配置寄存器: 0:禁止 1:使能
3	P1_30D	端口 P1_3 开漏输出配置寄存器: 0:禁止 1:使能
2:1	-	-
0		端口 P1_O 开漏输出配置寄存器: 0:禁止 1:使能

5.5.61 P1CS

DCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1CS	-	-	P1_5CS	P1_4CS	P1_3CS	-	-	P1_0CS
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	1	1	1	1	1
位编号	位符号	说明						
7:6	-	-						
5	P1_5C	S 0: S	端口 P1_5 输入类型配置寄存器: 0:Schmitt input buffer 1:CMOS input buffer					
4	P1_4C	S 0: S	P1_4 输入类 chmitt input MOS input I		器:			
3	P1_3C	S 0: S	P1_3 输入类 chmitt input MOS input I		器:			
2:1	-	-						
0	P1_0C	S 0: S	P1_0 输入类 chmitt input MOS input I		器:			

5.5.62 LVDCON

DDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LVDCON	LVDF	-	LVDREN	LVDEN	LVDS[3:0]				
读写	读	读	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	1	0	0	0	

位编号	位符号	说明			
7	LVDF	LVD 检测标志位 0:未检测到低电 1:检测到低电	电压		
6	-	-			
5	LVDREN		控制: 低电压复位功能 低电压复位功能,	使能复位前必:	须使能 LVDEN
4	LVDEN	LVD 模块使能控 0: 使能 LVD 模 1: 关闭 LVD 模	块		
3:0	LVDS[3:0]	LVD 检测点电压 LVDS 0000 0001 0010 0011 0100 0101 0110	世 上VD point 1.65V 1.75V 1.85V 1.95V 2.05V 2.15V 2.25V 2.35V	LVDS 1000 1001 1010 1011 1100 1101 1110 1111	2.45V 2.55V 2.65V 2.75V 2.85V 2.95V 3.05V 3.15V

5.5.63 PCLK0

DCH	Bit7	Bit6	3	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCLK0	I2CCEN	LPTIMO	CEN	PWMCEN	ADCCEN	SPICEN	WDTCEN	UART1CEN	UART0CEN
读/写	读/写	读/写		读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1		1	1	1	1	1	1
位编号	位符号	号 访	兑明						
7	I2CCE	·N		C 时钟使能 C 时钟禁止					
6	LPTIMC	· – N – I		PTIMER 时钟 PTIMER 时钟					
5	PWMC	⊢N I		NM 时钟使i NM 时钟禁.					
4	ADCCE	-		DC 时钟使制 DC 时钟禁』					
3	SPICE	· []	1:SPI 时钟使能 0:SPI 时钟禁止						
2	WDTC	- IXI — I		DT 时钟使能 DT 时钟禁』					

1	UART1CEN	1: UART1 时钟使能 0: UART1 时钟禁止
0	UART0CEN	1: UART0 时钟使能 0: UART0 时钟禁止

5.5.64 PCLK1

DFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
PCLK1	-	-	-	TIMCEN	-	GIO2CEN	GIO1CEN	GIO0CEN	
读/写	读	读	读 读 读/写 读 读/写 读/写					读/写	
复位值	0	1	1 1 1 0				1	1	
位编号	位符号	说明							
7:5	-	-							
4	TIMCEN		IMER 时间 IMER 时间						
3	ı	-							
2	GIO2CEN		PIO2 时 PIO2 时						
1	GIO1CEN		PIO1 时 PIO1 时						
0	GIO0CEN		SPIO0 时						

5.5.65 ACC

累加器 ACC 是一个常用的专用寄存器,常用于存放参加运算的操作数及运算结果。

E0H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ACC				ACC							
读/写		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	Τ	0	0	0	0	0	0	0	0		
位编号		位符号	说明								
7:0		ACC	存放参加设	5算的操作数	及运算结果	果					

5.5.66 PxIRQ

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0IRQ(E1H)	-	-	-	P0IRQ.4	P0IRQ.3	P0IRQ.2	P0IRQ.1	RF_SCLIRQ
P1IRQ(E2H)	-	-	P1IRQ.5	P1IRQ.4	P1IRQ.3	-	-	P1IRQ.0

P2IRQ(E3H)	P2IRQ.7	P2IRQ.6	RF_SDAIRQ	-	WAKEIRQ	P2IRQ.2	ı	-
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
		i e						
位编号	位符号	说明						

5.5.67 P2PD

E4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2PD	P2_7PD	P2_6PD	RF_SDAPD	-	WAKEPD	P2_2PD		-
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7	P2_7PD	端口 P2_7 0:禁止 1:使能	下拉配置寄存	字器:				
6	P2_6PD	端口 P2_6 0:禁止 1:使能	下拉配置寄存	字器 :				
5	RF_SDAPD		DA 下拉配置	寄存器:				
4	-	-						
3	WAKEPD	端口 WAKE 0:禁止 1:使能	下拉配置寄	存器:				
2	P2_2PD	端口 P2_2 0:禁止 1:使能	下拉配置寄存	字器:				
1:0	_	-						

5.5.68 P1DR

E5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1DR	-	-	P1_5DR	P1_4DR	P1_3DR		-	P1_0DR
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7:6	-	_						

5		端口 P1_5 驱动能力配置寄存器: 0:高驱动能力 1:低驱动能力
4		端口 P1_4 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力
3		端口 P1_3 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力
2:1	-	-
0		端口 P1_0 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力

5.5.69 PRESET0

E6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
PRESET0	I2CREN	LPTIMREN	PWMREN	ADCREN	SPIREN	WDTREN	UART1REN	UART0REN			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	1	1	1	1	1	1	1	1			
位编号	位符号	说明									
7	I2CREN	1: I2C 复 0: I2C 复									
6	LPTIMREN	l I	: LPTIM 复位释放 : LPTIM 复位								
5	PWMREN		1: PWM 复位释放 D: PWM 复位								
4	ADCREN	1: ADC 0: ADC									
3	SPIREN	1: SPI 复 0: SPI 复									
2	WDTREN	1: WDT 0: WDT	复位释放 复位								
1	UART1REN		1: UART1 复位释放 0: UART1 复位								
0	UART0REN	1: UART 0: UART	_0 复位释放 _0 复位								

5.5.70 PRESET1

E7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PRESET1	-	-	•	TIMREN	-	GPIO2REN	GPIO1REN	GPIO0REN
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	1	0	1	1	1

位编号	位符号	说明
7:5	-	-
4	TIMREN	1: TIMER 复位释放 0: TIMER 复位
3	-	-
2	GPIO2REN	1: GPIO2 复位释放 0: GPIO2 复位
1	GPIO1REN	1: GPIO1 复位释放 0: GPIO1 复位
0	GPIO0REN	1: GPIO0 复位释放 0: GPIO0 复位

5.5.71 PxIEN

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P0IEN(E9H)	-	-	-	P0IEN.4	P0IEN.3	P0IEN.2	P0IEN.1	RF_SCLIEN		
P1IEN(EAH)	-	-	P1IEN.5	P1IEN.4	P1IEN.3	-	-	P1IEN.0		
P2IEN(EBH)	P2IEN.7	P2IEN.6	RF_SDAIEN	-	WAKEIEN	P2IEN.2	-	-		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7:0	1	0: 关闭端	端口中断使能控制位:):关闭端口中断功能							

5.5.72 P2OD

ECH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P2OD	P2_70D	P2_60D	RF_SDAOD	-	WAKEOD	P2_2OD		1		
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7	P2_70D	端口 P2_7 0:禁止 1:使能	-							
6	P2_60D	端口 P2_6 开漏输出配置寄存器: 0: 禁止 1: 使能								
5	RF_SDAOD									
4	-	_								

3	WAKEOD	端口 WAKE 开漏输出配置寄存器: 0:禁止 1:使能
2		端口 P2_2 开漏输出配置寄存器: 0:禁止 1:使能
1:0	-	-

5.5.73 ADCCONT

EDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
ADCCONT	ADCCOUNT										
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	0	0	0	0	1			
位编号	位符号	说明									
7:0	ADCCOUNT	通道切换间隔时间,该值的单位是 ADC 时钟周期。 ADCCOUNT 实际的通道切换时间 = (adc_count + 16) * ADC 时钟周期时间 注意:该寄存器只能在启用 ADC 控制器之前配置									

5.5.74 RCHDIV

EEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RCHDIV	-	-	-	1	-	-	RCH	IDIV		
读/写	读	读	读	读	读	读	读/写	读/写		
复位值	0	0	0	0	0	0	1	0		
位编号	位符号	说明								
7:2	4	-								
1:0	RCH 分频设置: 00: 不分频; (系统跑不到,不配置)									

5.5.75 B

F0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
В		В										
读/写	读	读/写										
复位值	0	0	0	0	0	0	0	0				
位编号	位符号	说明										
7:0	B 在乘除指令中,会用到 B 寄存器,在其他指令中,B 寄存器可作为通用暂存 寄存器。											

5.5.76 PxPU

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
P0PU(F1H)	-	-	-	P0PU.4	P0PU.3	P0PU.2	P0PU.1	RF_SCLPU	
P1PU(F2H)	-	-	P1PU.5	P1PU.4	P1PU.3	-	-	P1PU.0	
P2PU(F3H)	P2PU.7	P2PU.6	RF_SDAPU	-	WAKEPU	P2PU.2	-	-	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	1	1	1	1	1	1	1	1	
位编号	位符号	说明							
7:0	端口上拉使能控制位(上拉电阻参考值 60KΩ): PxPU.y 0: 使能内部上拉电阻 x=0-4, y=0-7 1: 关闭内部上拉电阻								

5.5.77 P2CS

F4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P2CS	P2_7CS	P2_6CS	RF_SDACS	1	WAKECS	P2_2CS	-	-		
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写		
复位值	1	1	1	0	1	1	0	1		
	1	h .								
位编号	位符号	说明								
7	P2_7CS		输入类型配置 input buffer input buffer	遣寄存器 :						
6	P2_6CS	0: Schmitt	端口 P2_6 输入类型配置寄存器: : Schmitt input buffer : CMOS input buffer							
5	RF_SDACS	0: Schmitt	端口 RF_SDA 输入类型配置寄存器: D: Schmitt input buffer 1: CMOS input buffer							
4	-	-								
3	WAKECS	0: Schmitt	端口 WAKE 输入类型配置寄存器: D: Schmitt input buffer I: CMOS input buffer							
2	P2_2CS	端口 P2_2 输入类型配置寄存器: D: Schmitt input buffer 1: CMOS input buffer								
1:0	-	-								

5.5.78 ADCHL

F5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCHL	-			F	ADCHL[6:0]				
读/写	读/写	读/写	读/写	读/写	读/写	读	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
	1	L								
位编号	位符号	说明								
7	-	-								
6:0	ADCHL	ADCH[6:0] ADCHL[0] 0: P1_4 配 1: P1_4 配 ADCHL[1] 0: P1_5 配 1: P1_5 配 ADCHL[3] 0: P2_2 配 ADCHL[4] ADCHL[5] 0: P2_6 配 1: P2_6 配 ADCHL[6] 0: P2_7 配 1: P2_7 配	: 置为 GPIC]: 置为 ADC]: 置为 ADC]: 是保 为 ADC]: 是置 GPIC]: 是置 GPIC]: 是置 GPIC) 输 功 输 功 动 动 、 能 入 能 入 能 入 能 入 能 入 能 入 能 入 能 入 能 入 能						

5.5.79 ADCCSTAT

F6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCCSTAT	-	-	-	-	-	-	-	RXAVL		
读/写	读	读	读	读	读	读	读	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明	说明							
7:1		-	-							
0		此信号表示 BUF 接收到数据。此信号便于 CPU 轮询操作。 当接收器 BUF 非空时,此位为 1。 1:接收器 BUF 存有数据 0:接收器 BUF 为空 写 1 清 0								

5.5.80 ADCSPW

F7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCSPW	-	-	-	-	-	SAMPW		

读/写	读	读	读	读	读	读/写	读/写	读/写
复位值	0	0	0	0	0	1	0	0
位编号	位符号	说明						
7:3	-	-						
2:0	SAMPW	采样时钟脉 等于 3 的位 3: SAMPO 4: SAMPO 5: SAMPO 此寄存器的 常。	i。 CLK 宽为 4 CLK 宽为 5 CLK 宽为 6	I 个 ADC_(5 个 ADC_(6 个 ADC_(CLK 脉冲信 CLK 脉冲信 CLK 脉冲信	号 号 号		设置大于或 作不正

5.5.81 CLKCON

F8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
CLKCON	1	RC32KF	RC48MF	-	RC32KEN	RC48MEN	-	HSCLKSEL				
读/写	ı	读	读	读	读/写	读/写	读/写	读/写				
复位值	ı	1	1 1 0 1 1 0 0									
位编号 位符号 说明												
7	-	-										
6		0: RC32K	C32K 时钟源标志位: : RC32K 未正常启动 : RC32K 已正常启动									
5		0: RC48M	C48M 时钟源标志位: : RC48M 未正常启动 : RC48M 已正常启动									
4	-	-										
3		0: 关闭 R0	RC32K 时钟源开关控制位:): 关闭 RC32K : 打开 RC32K									
2		0: 关闭内部	RC48M 时钟源开关控制位: 0:关闭内部 RC48M 时钟源,若当前系统时钟为 RC48M,写 0 无效 1:打开内部 RC48M 时钟源									
1	-											
0		系统时钟源头选择,即 HSCLK 来自经过 RCHDIV 分频后的内部高频时钟 RCH48M 的选择位: 0:选择经过 RCHDIV 分频后的内部高频时钟 RCH48M 作为系统时钟源										

 UM2082F08 用户手册
 系统配置(SFR)

5.5.82 PxOEN

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
P0OEN(F9H)	-	-	-	P00EN.4	P0OEN.3	P00EN.2	P00EN.1	RF_SCLOEN	
P10EN(FAH)	-	-	P10EN.5	P10EN.4	P10EN.3	-	-	P10EN.0	
P2OEN(FBH)	P20EN.7	P20EN.6	RF_SDAOEN	-	WAKEOEN	P20EN.2	-	-	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	1	1	1	1	1	1	1	1	
位编号	位符号	说明							
7:0	PxOEN.y x=0-4, y= 7	·0-0: 输出	端口方向控制位: -0: 输出模式 1: 输入模式						

5.5.83 P2DR

FCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P2DR	P2_7DR	P2_6DR	RF_SDADR	-	WAKEDR	P2_2DR	-	-		
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写		
复位值	0	0	0 0 0 0 0 0							
位编号	号 │ 位符号 │ 说明									
7	P2_7DR	端口 P2_7 0:高驱动能 1:低驱动能		置寄存器:						
6	P2_6DR	0: 高驱动能	日 P2_6 驱动能力配置寄存器: : 高驱动能力 : 低驱动能力							
5		端口 RF_SDA 驱动能力配置寄存器: 0: 高驱动能力 1: 低驱动能力								
4	-	-								
3		0: 高驱动能	端口 WAKE 驱动能力配置寄存器: D: 高驱动能力 1: 低驱动能力							
2	P2_2DR	端口 P2_2 驱动能力配置寄存器: D: 高驱动能力 1: 低驱动能力								
1:0	-	-								

5.5.84 ADCVREF

FDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCVREF	-	-	ADCSPEED		-	-	-	VREFSEL

 UM2082F08 用户手册
 系统配置(SFR)

读/写	-	-	读/写	读/写	-	-	-	读/写		
复位值	-	•	- 0 0 0							
位编号	位符号	说明								
7:6	-	-								
5:4	ADCSPEED	ADCSPEE	DCSPEED 选择位,保留为默认值 0							
3:1	-	-								
0	VREFSEL	ADC 电压基准控制位: D:VDDH 作为 ADC 电压基准源								

5.5.85 ADCCDR0

FEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCCDR0				CLK	DIV0					
读/写	读/写	读/写 读/写 读/写 读/写 读/写 读/写 读/写								
复位值	1	1 1 1 1 1 1								
位编号	位符号	说明	说明							
7:0	CLKDIV0	ADC 内部印 ADC 时钟步 其中,f _{adc_0} 倍数= {CLb 注意:请勿 需使用 1 分	顾率公式为 ck 是 ADC Ⅰ 《DIV1, CLK !把 clkdiv 设	f _{adc_clk} 内部时钟的 (DIV0}。 b为 0 或 1,	若把 clkdiv	LK 是系统时		kdiv 是分频 分频。如		

5.5.86 ADCCDR1

FFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADCCDR1				CLK	DIV1					
读/写	读/写	读/写	读/写 读/写 读/写 读/写 读/写 读/写							
复位值	0	0	0 0 0 0 0 0							
位编号	位符号	说明								
7:0	CLKDIV1	ADC 内部的 ADC 时钟频 其中,f _{adc_o} 倍数= {CLk 注意:请勿 需使用 1 分	乘公式为 k 是 ADC l (DIV1, CLK 把 clkdiv 设	f _{adc_clk} 内部时钟的 (DIV0}。 战为 0 或 1,	若把 clkdiv	LK 是系统时		kdiv 是分频 分频。如		

5.5.87 LVD_LV

C004H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LVD_LV	-	-	-	-	-	LVD_	TSET	LVDLVEN	
读/写	读	读	读	读	读	读/写	读/写	读/写	
复位值	0	0	0	0	0	1	1	1	
位编号	位符号	说明	明						
7:3	-	-							
2:1	LVD_TSE	11: 滤 T 10: 滤 01: 滤	波时间设置位: : 滤波时间为 1 个 RC32K 时钟): 滤波时间为 8 个 RC32K 时钟 : 滤波时间为 16 个 RC32K 时钟						
0	LVDLVE	00: 滤波时间为 29 个 RC32K 时钟 LVD 滤波使能位 N 1: 开启 RC32K 时钟滤波功能 0: 关闭 RC32K 时钟滤波功能							

6 无线射频(RF)

6.1 主要特性

● 三个独立天线通道: X/Y/Z 轴

● 载波频率范围: 30~300KHz

● 最远唤醒距离: >10m

● 接收灵敏度: <70uVrms

● 数据率: 1~8kbps

6.2 寄存器

表 6-1: 无线射频寄存器表

寄存器	地址	默认值	寄存器	地址	默认值
Reg00	0x00	0x7D	Reg18	0x12	0x96
Reg01	0x01	0x14	Reg21	0x15	0x00
Reg02	0x02	0xF0	Reg22	0x16	0x3F
Reg04	0x04	0x00	Reg24	0x18	0x3C
Reg05	0x05	0x00	Reg31	0x1F	0x00
Reg06	0x06	0x00	Reg32	0x20	0x00
Reg07	0x07	Read only	Reg33	0x21	0x00
Reg08	0x08	Read only	Reg34	0x22	0x00
Reg09	0x09	Read only	Reg35	0x23	0x00
Reg10	0x0A	Read only	Reg36	0x24	0x11
Reg11	0x0B	Read only	Reg37	0x25	0x11
Reg12	0x0C	0x20	Reg38	0x26	0x11
Reg13	0x0D	0x05	Reg40	0x28	0x00
Reg14	0x0E	0x1F	Reg42	0x2A	0x33
Reg15	0x0F	0x06	Reg43	0x2B	0x09
Reg17	0x11	0x69	Reg127	0x7F	0x00

6.2.1 Reg00 Default Value: 0x7D

Reg00	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x00	EN_SCA N	EN_C H1	EN_CH2	EN_CH3	EN_ON/OFF	EN_PATTE RN	EN_P AT2	EN_MA NCH		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	1	1 1 1 1 0 1							
位编号	位符	号	说明							
7	EN_S	CAN	1: 使能扫描	苗模式						
6	EN_C	CH1	1: 通道 1	使能						
5	EN_C	H2	1: 通道 2 使能							

UM2082F08 用户手册 无线射频(RF)

4	EN_CH3	1: 通道3使能
3	EN_ON/OFF	1: 使能间歇模式
2	EN_PATTERN	1: 使能对码匹配
1	EN_PAT2	1: 使能对码双匹配
0	EN_MANCH	1: 使能曼彻斯特解码器

6.2.2 Reg01 Default Value: 0x14

Reg01	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x01	EN_ATT	-	-	ATT_	RES	EN_GBOOST	DASL_ABS	ABS_DOWN			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	1	0	1	0	0			
位编号	位符	号	说明								
7	EN_A	ATT	1: 天线	1:天线阻尼器使能							
6:5	-		-	-							
4:3	ATT_F	RES	00: 2K 01: 8K	天线阻尼器电阻设置 00: 2K 01: 8K 10: 32K							
2	EN_GB	OOST	1: 额外	1: 额外增益使能							
1	DASL_	ABS	1: 数据	1:数据分割器采用绝对参考值							
0	ABS_D	OWN	1: 降低	1:降低数据分割器绝对参考值							

Reg02 Default Value: 0xF0 6.2.3

Reg02	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x02	AGC_TLI M	AGC_ UD	EN_AUXLDO	1	DISABLE_ AGC	PAT32	1	HY_POS		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	1	1	1	1	0	0	0	0		
位编号	位符	号	说明	说明						
7	AGC_	TLIM	1: AGC 仅作用于第一载波期间							
6	AGC_	_UD	1: AGC 工作在	up/down	/down 模式					
5	EN_AU	XLDO	1:使能辅助 LDO							
4	-		-							
3	DISABLE	_AGC	1: 禁用 AGC							
			模式扩展:							
2	PAT:	32	0: 16bits							
			1: 32bits							

1	•	-
0	HY POS	0: 迟滞发生在上升沿和下降沿
U	111_F03	1: 迟滞只发生在上升沿

6.2.4 Reg04 Default Value: 0x00

Reg04	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x04		-				CAPS_CH	1 1			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号		说明							
7:5		-	-							
			设置通道 1	的调谐电容	值:					
				<4>=1: 加 16pF 至 CH1						
4.0	CADO	2 0114	<3>=1: 加 8pF 至 CH1							
4:0	CAPS	S_CH1	<2>=1: 加 4pF 至 CH1							
			<1>=1: 加 2pF 至 CH1							
			<0>=1: 加 1pF 至 CH1							

6.2.5 Reg05 Default Value: 0x00

Reg05	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x05		-	CAPS_CH2				12			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位往	符号	说明							
7:5										
			设置通道 2 的调谐电容值:							
			<4>=1:加 16pF 至 CH2							
4:0	CAR	S CH2	<3>=1: 加 8pF 至 CH2							
4.0	CAP	S_CHZ	<2>=1:加	4pF 至 CH2						
			<1>=1:加 2pF 至 CH2							
			· <0>=1:加 1pF 至 CH2							

6.2.6 Reg06 Default Value: 0x00

Reg06	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x06		-	- CAPS_CH3					
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:5	-	-
		设置通道 3 的调谐电容值:
		<4>=1: 加 16pF 至 CH3
4:0	CADS CH3	<3>=1: 加 8pF 至 CH3
4.0	CAPS_CH3	<2>=1: 加 4pF 至 CH3
		<1>=1: 加 2pF 至 CH3
		<0>=1: 加 1pF 至 CH3

6.2.7 Reg07 Default Value: Read only

Reg07	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x07	-			RSSI1					
读/写	读	读	读	读	读	读	读	读	
复位值	0	0	0	0	0	0	0	0	
位编号	位征	守号	说明						
7:5		-	-						
4:0	RS	SI1	通道1的F	RSSI 值					

6.2.8 Reg08 Default Value: Read only

Reg08	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x08		-				RSSI2				
读/写	读	读	读	读	读	读	读	读		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号		说明							
7:5	-		-							
4:0	RSSI2		通道 2 的 RSSI 值							

6.2.9 Reg09 Default Value: Read only

Reg09	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x09		-		RSSI3						
读/写	读	读	读	读	读	读	读	读		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号		说明							
7:5	-		-							
4:0	RSSI3		通道 3 的 RSSI 值							

6.2.10 Reg10 Default Value: Read only

Reg10	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x0A		F_WAKE									
读/写	读	读	读	读	读	读	读	读			
复位值	0	0	0	0 0 0 0 0							
位编号	位征	符号	说明	说明							
7:0	F_W	/AKE	误触发计数器								

6.2.11 Reg11 Default Value: Read only

Reg11	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
0x0B	1	DATA_OK	AGC_L OCK	LC_T_ DONE	EFUSE_TRI M_DONE	LC_ER R_CH3	LC_ERR _CH2	LC_ERR _CH1				
读/写	读	读	读	读	读	读	读	读				
复位值	0	0	0	0	0	0	0	0				
位编号		位符号	说明									
7		-	-									
6	[DATA_OK	1: DATA 0: DATA	接收完成 接收未完成	艾							
5	A	GC_LOCK	1: AGC LOCK 0: AGC 未 LOCK									
4	LC	C_T_DONE		g 完成 rning 完成 rning 未完	成							
3	EFUSE	E_TRIM_DONE		E TRIM 完 E TRIM 未								
2	LC	_ERR_CH3		道 3 Error 道 3 正常								
1	LC	_ERR_CH2	1: LC 通道 2 Error 0: LC 通道 2 正常									
0	LC	_ERR_CH1		道1Error 道1正常								

6.2.12 Reg12 Default Value: 0x20

Reg12	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x0C	-		MACT_MOD			Gain Set		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	0	0	0	0	0

		I
位编号	位符号	说明
7:6	-	-
		曼彻斯特解码模式:
5	MACT_MOD	1: 上升沿为 0, 下降沿为 1
		0: 上升沿为 1, 下降沿为 0
4:0	Gain_Set	手动增益设置(AGC 禁用时)

6.2.13 Reg13 Default Value: 0x05

Reg13	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x0D		Gain_R	UD		A_WAKE_EN		T_AWAKE				
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	0	0	1	0	1			
			说明								
位编号	位编号 位符号										
7:4	AGC 初始增益衰% 0000: 0dB 010x: -4dB 011x: -8dB 100x: -12dB 101x: -16dB 110x: -20dB 111x: -24dB				议直:						
3	A_WA	KE_EN	1: Artific	1. Artificial wake-up 使能							
2:0	T_AV	WAKE	Artificial v 000: 0.2 001: 1 se 010: 5 se 011: 20: 100: 2 m 101: 15 110: 1 he 111: 2 he	sec ec ec sec sin min	寸间设置:						

6.2.14 Reg14 Default Value: 0x1F

Reg14	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x0E		-				T_BITS				
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	1	1	1	1	1		
位编号	位往	符号	说明							

7:5	-	-
4:0	T_BITS	波特率定义-bps【FRC-OSC/(Reg14<4:0>+1)】: 00011: 4 00100: 5 00101: 6 00110: 7 00111: 8

6.2.15 Reg15 Default Value: 0x06

Reg15	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x0F	PGA_KEEP		T_OUT T_ON T_OFF							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0 0 0 1 1							
位编号	位符号		说明							
7	PGA_KE	EP	1: 在增益	PGA 增益调节完毕后是否保持使能设定: 1: 在增益调节完成后,所有 PGA 保持使能状态。 0: 在增益调节完成后,未选中的通道关闭。						
6:4	T_OUT		自动超时时间设置: 000: 无自动超时 001: 50 msec 010: 100 msec 011: 150 msec 100: 200 msec 101: 250 msec 110: 300 msec							
3:2	T_ON		间歇运行 ⁷ 00: 0.5 n 01: 1 ms 10: 2 ms 11: 4 ms	ns s	间设置/轮询扫掠	苗模式时间	设置:			
1:0	T_OFF	-	间歇运行 ⁷ 00: 2 ms 01: 4 ms 10: 8 ms 11: 16 m	; ;	寸间设置:					

6.2.16 Reg17 Default Value: 0x69

Reg17	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x11		Pattern2									
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	1	1	1 0 1 0 0 1							
位编号	位征	守号	说明								
7:0	Patt	Pattern2 对码第二个字节									

6.2.17 Reg18 Default Value: 0x96

Reg18	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x12		Pattern1								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	1	0	0	1	0	1	1	0		
位编号	位征	守 号	说明							
7:0	Patt	ern1	对码第一个字节							

6.2.18 Reg21 Default Value: 0x00

Reg21	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x15				RESET_LC _TUNING	CLEAR_WA KE	RESET _RSSI	RESET_ REG	CLEAR_ FALSE		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	1	立符号	说明							
7:5		-	-							
4	RESET_	LC_TUNII	NG 1: ⅓	1:清除 LC_TUNING 完成状态,返回到 RCSOC 较准完成状态						
3	CLE	AR_WAKE	1: 🧎	1:清除唤醒状态,返回监听模式						
2	RES	ET_RSSI	1: 🔻	1:对 RSSI 检测进行复位						
1	RES	SET_REG	1: 月	1: 所有寄存器复位至初始值						
0	CLEA	AR_FALSE	1: 🧎	1: 清除误触发计数器						

6.2.19 Reg22 Default Value: 0x3F

Reg22	Bit7	Bit6	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
0x16		Frequency_Carrier										
读/写	读/写	读/写 读/写 读/写 读/写 读/写 读/写 读/写										
复位值	0	0 0 1 1 1 1 1 1										
位编号	位名	符号	说明									
7:0	Frequenc	cy_Carrier	工作载波频率 工作载波频率计算: (reg22[0:7] *2) KHz 举例: 假设需要设置工作载波频率为 30KHz 则 30/2=15,则 reg22[0:7]=0xf									

6.2.20 Reg24 Default Value: 0x3C

Reg24	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x18	-		AGC_DELAY		FD_DELAY		-	-	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	1	1	1	1	0	0	
位编号	位征	符号	说明						
7:6		-	-						
5:4	AGC_	DELAY	00: 1个 01: 2个 10: 4个	开始时延时 32K 时钟居 32K 时钟居 32K 时钟居 32K 时钟居	引期; 引期; 引期;				
3:2	FD_C	DELAY	频率检测开始时间延时设置位: 00: 1 个 32K 时钟周期; 01: 2 个 32K 时钟周期; 10: 4 个 32K 时钟周期; 11: 10 个 32K 时钟周期						
1:0		-	-						

6.2.21 Reg31 Default Value: 0x00

Reg31	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1F	Data1							
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0
位编号	位符号		说明					

7:0	Data1	接收到的第一个字节数据
-----	-------	-------------

6.2.22 Reg32 Default Value: 0x00

Reg32	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x20		Data2									
读/写	读	读	读	读	读	读	读	读			
复位值	0	0 0 0 0 0 0 0									
位编号	位符号 说明										
7:0	Data2 接收到的第二个字节数据										

6.2.23 Reg33 Default Value: 0x00

Reg33	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x21		Data3									
读/写	读	读	读	读	读	读	读	读			
复位值	0	0	0	0	0	0	0	0			
位编号	位往	位符号 说明									
7:0	Da	ata3 接收到的第三个字节数据									

6.2.24 Reg34 Default Value: 0x00

Reg34	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x22				С)ata4				
读/写	读	读	读	读	读	读	读	读	
复位值	0	0	0	0 0 0 0 0 0					
位编号	位征	符号	说明						
7:0	Da	ita4	接收到的第四个字节数据						

6.2.25 Reg35 Default Value: 0x00

Reg35	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x23				Г)ata5			
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0
							_	

位编号	位符号	说明
7:0	Data5	接收到的第五个字节数据

6.2.26 Reg36 Default Value: 0x00

Reg36	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x24		Data6									
读/写	读	读	读	读	读	读	读	读			
复位值	0	0	0	0 0 0 0 0							
位编号	位征	位符号 说明									
7:0	Data6 接收到的第六个字节数据										

6.2.27 Reg37 Default Value: 0x00

Reg37	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
0x25		Data7										
读/写	读	读	读	读	读	读	读	读				
复位值	0	0	0 0 0 0 0									
位编号	位符号 说明											
7:0	Data7 接收到的第七个字节数据											

6.2.28 Reg38 Default Value: 0x00

Reg38	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x26					Data8				
读/写	读	读	读	读	读	读	读	读	
复位值	0	0	0	0	0	0	0	0	
位编号	位征	守号	说明						
7:0	Da	ıta8	接收到的第八个字节数据						

6.2.29 Reg40 Default Value: 0x00

Reg40	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x28		-		ECNT_C	elay_SET	1		EN_EFUSE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

复位值	0	0	0	0	0	0	0	0
			1					
位编号	位名	守号	说明					
7:5		-						
4:3	ECNT_D	elay_SET		功,则计数器 s s ms		ត៌, Delay∃	以下时间,	如果 pattern
2:1	- -							
0	EN_E	FUSE	efuse TR 功后再 di 1: efuse 0: efuse	sable: 使能	Enable 之后不	load effu	se 值或 re	eg 值,load 成

6.2.30 Reg42 Default Value: 0x33

Reg42	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x2A		BSE	L			-		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	1	0	0	1	1
位编号	位征	符号	说明					
7:4	BS	SEL	PGA 工作频带设置: 0001: 200KHz~300KHz 0010: 150KHz~200KHz 0011: 90KHz~150KHz 0100: 70KHz~90KHz 0111: 50KHz~70KHz 1111: 30KHz~50KHz					
3:0								

6.2.31 Reg43 Default Value: 0x09

Reg43	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x2B	0x2B -					DASL_HY		CH_LP	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	1	0	0	1	
位编号	位符号		说明						
7:4			-						

3:2	DASL_HY	Data Slice 比较器迟滞电压设置: 00: 10mV 01: 20mV 10: 30mV 11: 40mV
1:0	CH_LP	PGA 低功耗模式设置: 00: Max 11: Min

6.2.32 Reg127 Default Value: 0x00

Reg43	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x7F	-					START_L	START_LCT		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位名	号	说明						
7:2	-	•	-	-					
1	STAF	RT_L	开始监听模式						
0	START	_LCT	开始 LC Tu	nning					

6.3 运行模式

芯片在正常工作模式下,只有被使能并处于监听模式下的通道放大器和时钟发生器在运行,其它模块处于关闭状态。在监听模式下,如果监测到特定频率的载波信号,则开启 RSSI 测量,并把结果存储在相应的寄存器中。

6.3.1 标准监听模式

多通道持续运行,三个通道可独立配置使能,使能的通道会一直处于监听接收状态,如下图所示。

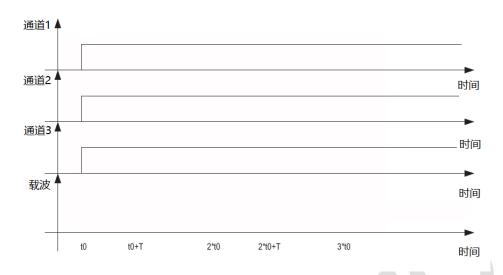


图 6-1: 标准监听模式

6.3.2 轮询扫描模式

多通道轮询扫描运行,三个通道可独立配置使能,使能的通道会按照定义的时间窗口内运行扫描监听,时间窗口 T 默认值 1ms,可通过寄存器(Reg15[3:2])配置。在每个时间窗口中只能有一个通道处于监听接收状态。当时间窗口结束时,当前使能的通道被关闭,下一个使能的通道将被开启,并以此类推。如下图所示。

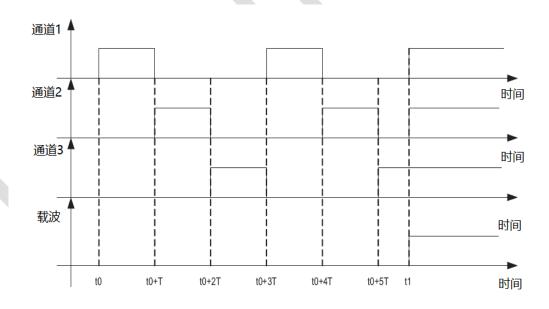


图 6-2: 轮询扫描模式

轮询扫描模式按照使能的通道一直循环进行切换监听接收状态,一旦任意通道检测到载波信号,所有使能的通道都会被同时激活,芯片将把 RSSI 值最强的通道接入后面的解调器。通道这种方式,可以用单通道的电流消耗进行多方向的检测,降低功耗的同时保证可靠监听。

6.3.3 间隙运行模式

多通道间歇运行,三个通道可独立配置能使,使能的通道会按照定义的时间窗口内,同时开启 所有使能的通道,并在下一个时间段中同时关闭所有使能通道,如下图所示:

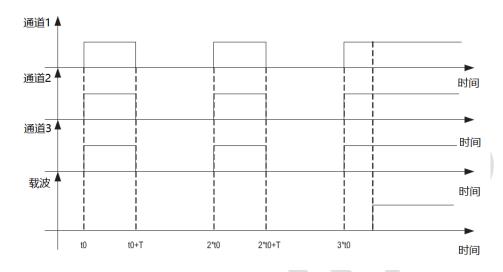


图 6-3: 间隙运行模式

间歇运行模式开启时间窗口 T1 默认值为 1ms,可通过寄存器(Reg15[3:2])配置。关闭时间窗口 T2 默认值为 8ms,可通过寄存器(Reg15[1:0])配置。

6.4 唤醒模式

UM2082F08 的唤醒协议支持载波检测、单模式检测和双模式检测三种模式。其中单模式检测和双模式检测又支持 16 位对码和 32 位对码两种模式。另外,每种检测模式都支持曼彻斯特编解码。

6.4.1 载波检测

载波检测是指关闭对码匹配模块(Reg00[2]= 0),使芯片处于载波检测模式。在此模式下, 芯片一旦检测到正确的载波频率,就给出唤醒信号,然后进入数据接收状态。芯片将接收到的数据 按字节存到数据寄存器中(最多保存 8 字节数据),如下图所示。

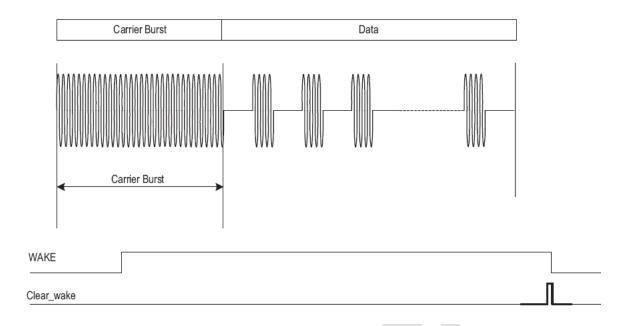


图 6-4: 载波检测

载波检测在载波发射(Carrier Burst)期间完成。以芯片内部 32KHz 时钟为基准设定时间窗口,在时间窗口内,由计数器对接收到的载波信号进行计数,通过计数次数就可以判断接收到的载波频率是否在规定的范围之内。例如,在典型应用的载波频率下(128KHz),以 4/32KHz=125us的时间窗口对载波进行计数,如果计数次数为 16 次,则频率刚好为 128KHz。通过寄存器Reg16[7:6]可以对频率检测次数的容差进行设置:Reg16[7:6]的默认值为 b'10,则可接收的频率范围是:112KHz~144KHz。选择不同的载波频段,时间窗口也要做相应的调整,但计数次数基本维持在 16 次左右。在载波发射期间,一旦频率检测成功,则通道放大器的 AGC 功能开启,并完成RSSI 检测。为了保证芯片有足够的时间来完成频率检测、AGC 控制和 RSSI 检测等功能,载波发射期间的载波发射时间必须大于一个最小值。最小载波发射时间和所用的载波频段有关,载波频率越高,所需最小时间越短。不同频段的最小载波发射时间如下表所示:

工作频段(KHz)	最小载波发射时间
190~300	70 个载波周期
130-190	80 个载波周期
80-130	90 个载波周期
46-80	110 个载波周期
30-46	120 个载波周期

表 6-2: 频段对应的载波周期表

注: 这个时间主要由接收电路决定,这里只是一个初步的估算值。如果芯片工作在扫描模式,所需的最小载波发射时间比正常的监听模式要长。在实际应用中,发射激励器可以根据接收端的需要灵活调整。

6.4.2 单模式检测

单模式检测是指在载波检测模式的基础上,增加对码匹配功能,在单检测模式中(上电默认状态,Reg00[2:1]=2b'10),对码只匹配一次。如果 32bit 扩展模式被使能(Reg02[2]=1),那么预存的 16 位对码(Reg17、Reg18)将被看作曼彻斯特码,即原始数据,发射端将发送 32 位的 NRZ 码。反之,如果 16bit 扩展模式不使能(Reg02[2]=0),那么预存的 16 位对码将被看作曼彻斯特编码后的数据,发射端只需发送 16 位的 NRZ 码。

● 曼彻斯特解码关闭(Reg00[0]=0),16bit 模式(Reg02[2]=0)

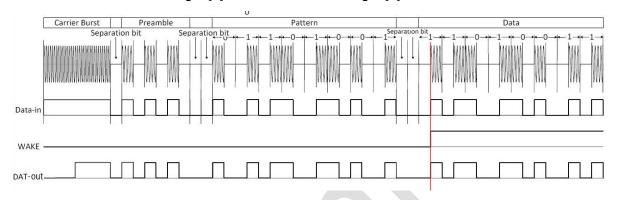


图 6-5: 曼彻斯特解码关闭, 16bit 模式

该模式中,载波发射(carrier burst)之后跟一个 NRZ bit 的低电平时间(Separation bit),然后是引导码(Preamble),两个 NRZ bit 的低电平时间(Separation bit)和对码(Pattern),再加两个 NRZ bit 的低电平时间(Separation bit),最后是数据。如图 6-5 所示,对码(Pattern)值是 1001011001101001。Reg18 值是 10010110,Reg17 值是 01101001,发射端需发送 16 位 NRZ 码。

● 曼彻斯特解码使能(Reg00[0]=1), 16bit 模式(Reg02[2]=0)

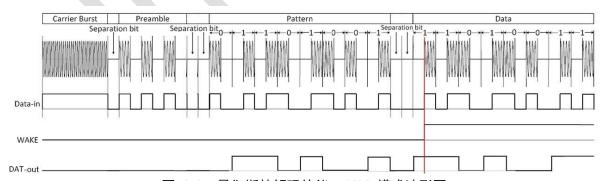


图 6-6: 曼彻斯特解码使能, 16bit 模式波形图

该模式中,载波发射(carrier burst)之后跟一个 NRZ bit 的低电平时间(Separation bit),然后是引导码(Preamble),两个 NRZ bit 的低电平时间(Separation bit)和对码(Pattern),再加两个 NRZ bit 的低电平时间(Separation bit),最后是数据。如图 6-6 所示,对码(Pattern)值是 1001011001101001。Reg18 值是 10010110,Reg17 值是 01101001,其中,Reg17、Reg18

两个寄存器写入的值为曼彻斯特编码数据,对应解码原始数据是 01101001,发射端需发送 16 位 NRZ 码。

● 曼彻斯特解码关闭(Reg00[0]=0),32bit 模式(Reg02[2]=1)

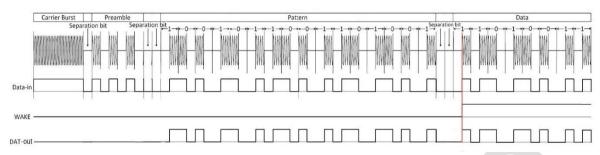


图 6-7: 曼彻斯特解码关闭, 32bit 模式

● 曼彻斯特解码使能(Reg00[0]=1), 32bit 模式(Reg02[2]=1)

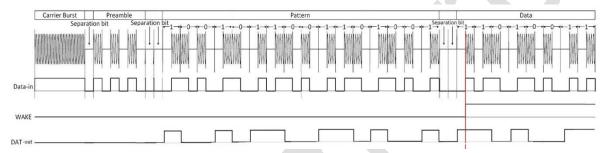


图 6-8: 曼彻斯特解码使能, 32bit 模式波形图

6.4.3 双模式检测

双模式检测是指在单模式检测的基础上再增加一次对码匹配功能,启动双模式检测,需要把寄存器 reg00[1]写为 1(reg00[2:1]=b'11)。在这种模式中,对码会重复两次。在双模式检测条件下,如果 16bit 模式被使能,发射端需要连续发送 32bit 的 NRZ 码。如果 32bit 模式被使能,那么发射端需要连续发送 64bit 的 NRZ 码。

● 曼彻斯特解码使能(Reg00[0]=1), 16bit 模式(Reg02[2]=0)如下图所示:

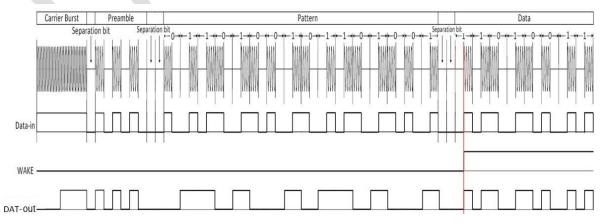


图 6-9: 双模式检测 16bit 模式波形图

● 曼彻斯特解码使能(Reg00[0]=1), 32bit 模式(Reg02[2]=1)如下图所示:

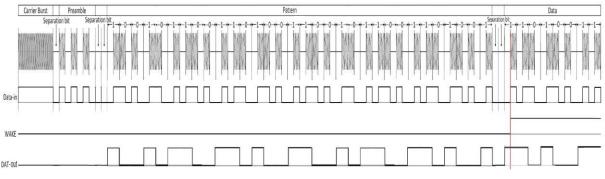


图 6-10: 双模式检测 32bit 模式波形图

6.5 对码匹配模块

为了防止芯片在噪声或干扰环境中唤醒,芯片内部的对码匹配模块对模拟解调器输出的数据和预设的对码值进行比对。在对码匹配使能的条件下,芯片检测到 LF(低频)载波之后,对码匹配模块开始搜索前导码,然后开始匹配对码值,在规定的时间内,接收到的数据和预设对码值进行匹配。如果对码匹配成功,则唤醒中断信号通过 WAKE 输出高电平,然后进入数据接收模式。如果对码匹配失败,则终止内部唤醒,重新进入监听模式。

如果对码匹配使能被禁用,芯片在检测到 LF 载波之后会直接唤醒并进入数据接收模式。

6.6 对码设置

UM2082F08 预存的对码长度固定为 16bit。如果工作在 16bit 模式(Reg02[2]=0),则对应的 曼彻斯特码的长度为 8bit,共有 2^8=256 种选择。如果工作在 32bit 模式(reg02[2]=1),则对应 的曼彻斯特码的长度为 16bit,共有 2^16=65536 种选择。

对码匹配方式有两种:

- 一种是 16 位的曼彻斯特码和接收到的 16 位曼彻斯特编码数据进行匹配。
- 另一种是 16 位未经编码的数据和接收到的 32 位曼彻斯特编码数据进行匹配。
 - ▶ 单检测、16bit 模式下,发射端发送的对码为 16bits 的 NRZ 码;
 - ▶ 单检测、32bit 模式下,发射端发送的对码为 32bits 的 NRZ 码;
 - ▶ 双检测、16bit 模式下、发射端发送的对码为 32bits 的 NRZ 码:
 - ▶ 双检测、32bit 模式下,发射端发送的对码为 64bits 的 NRZ 码。

6.7 数据接收

芯片成功唤醒之后,芯片就会进入数据接收模式,此时,芯片相当于一个普通的 ASK 接收机。接收到的数据会被存入缓冲寄存器中,最多可存储 8 个字节的数据。MCU 可以通过 RF 接口读取接收到的数据。

6.8 误触发计数

在对码匹配使能模式的情况下,芯片唤醒需要满足两个条件,第一个是载波检测成功,第二个是对码匹配成功。如果第一个条件满足而第二步失败,则被认为是误触发,说明周围环境存在很多噪声或干扰,这种情况下可以适当降低接收灵敏度来提高唤醒可靠性。因此,误触发计数器可以为检测周围环境的噪声水平提供判断依据,并根据环境的噪声水平动态调节芯片设置,以达到最佳的唤醒效果。

6.9 运行状态

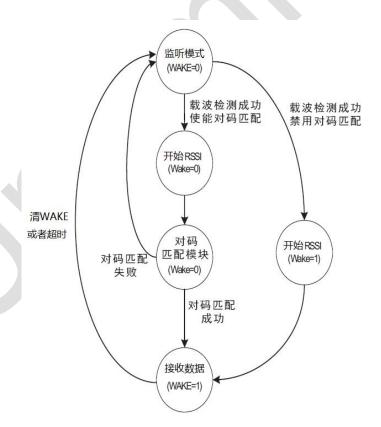


图 6-11: RF 运行状态图

6.10 RF 接口说明

RF_SCL、RF_SDA 两个 IO 作为 RF 射频的通信接口 IO,这两个 IO 均为开漏模式。如图 6-11、图 6-12 所示为读写操作帧格式,RF 地址为:0110010。RF 地址后跟随着读写标志,0 为写操作,1 为读操作。ACK 为 RF 返回确认信号,0 为有效答复。

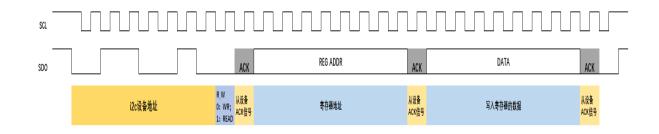


图 6-12: 写操作时序图

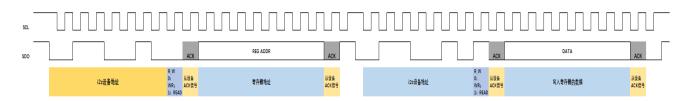


图 6-13: 读操作时序图

6.11 低频无线唤醒典型配置

Reg00 = 0x7DReg27 = 0x04Reg01 = 0x14Reg28 = 0x33Reg02= 0x30 Reg29 = 0x33Reg03 = 0x03Reg30 = 0x33Reg15 = 0x6BReg41 = 0x11Reg16 = 0xBFReg42 = 0x33Reg21 = 0x0CReg43 = 0x33Reg24 = 0x3CReg127 = 0x03

表 6-3: RF 典型配置表

7 EFC

7.1 概述

芯片上集成了 32K Bytes 的 EFLASH 存储器,用于保存芯片所有的关键脱机信息和数据。EFC 为 EFLASH 控制器,在 CPU 的配置下,完成 EFLASH 读、写、擦除等操作。

7.2 主要特性

- 支持 EFLASH 的读写(8bit)、sector 擦除等操作流程。
- 读等待时间可以配置。
- 主区有 64 个 sector, 每个 512 字节。
- NVR 区有 2 个 sector, 每个 512 字节。
- 支持对 NVR 区域擦/写保护功能。
- 支持擦写保护功能。
- 支持自动锁总线功能。

7.3 EFLASH 读效率

当 RD_WAIT 值设置为 0 时, CPU 取指时无效率损失, 读 EFLASH 与读取 ROM 在控制器端时序相同。RD_WAIT 设置为 1 时, EFC 总线在每个读操作时会被拉低 1 个周期(系统时钟运行在24MHz 时,需将 RD_WAIT 设置为 1)。

7.4 软件流程

7.4.1 Read 操作

EFLASH 上电稳定后可以执行读操作。读操作注意配置读等待时间 RD_WAIT。

7.4.2 Write 操作

Write 操作步骤如下:

- 1. 使能 OPSET.PAGEWSET 写模式。
- 2. 往 OADR 写入 EFlash 地址。
- 3. 往 ODATA 写入数据。

- 4. 配置 OCTRL.PUMP_SEL 电压。
- 5. 使能 OCTRL.PUMP_EN。
- 6. 等待 PUMP_OK 置 1。
- 7. 使能 VPPO EN 启动编程。
- 8. 等待 VPPO EN 清 0 编程完成。
- 9. 关闭 PUMP EN。
- 10. 关闭 OPSET.PAGEWSET 写模式。

Write 操作流程图如下所示:

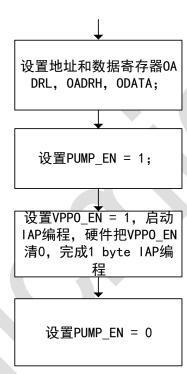


图 7-1: 写操作流程图

7.4.3 Erase 操作

Erase 操作步骤如下:

- 1. 关闭 OPSET.PAGEWSET 写模式。
- 2. 使能 OPSET.PAGESERSET page 擦除模式。
- 3. 往 OADR 写入 page 地址。
- 4. 配置 OCTRL.PUMP SEL 电压。
- 5. 使能 OCTRL.PUMP_EN。
- 6. 等待 PUMP_OK 置 1。
- 7. 使能 VPPO_EN 启动编程。

- 8. 等待 VPPO_EN 清 0 编程完成。
- 9. 关闭 PUMP_EN。
- 10. 关闭 OPSET.PAGESERSET page 擦除模式。

Erase 操作流程图如下图所示:

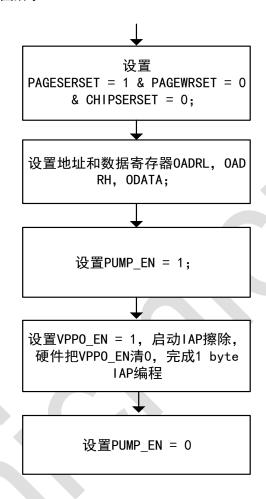


图 7-2: 擦除操作流程图

UM2082F08 用户手册 PWM (脉宽调制模块)

8 PWM (脉宽调制模块)

8.1 特性

- 1路 16位精度 PWM 模块(不含 LPtimer 一路)
- 提供每个 PWM 周期溢出中断
- 输出极性选择

8.2 功能描述

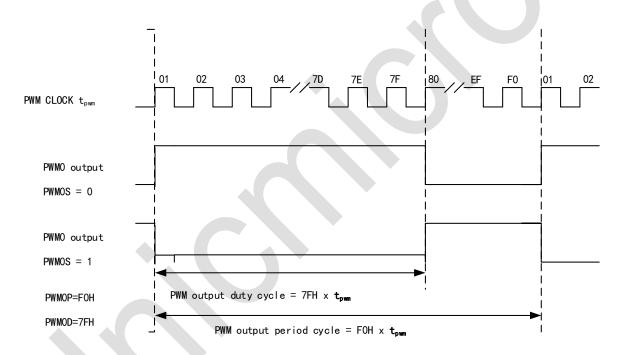


图 8-1: PWM 输出范例图

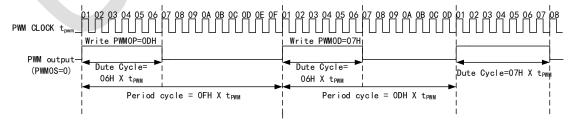


图 8-2: PWM 输出周期或占空比改变范例图

UM2082F08 用户手册 PWM (脉宽调制模块)

8.3 PWM 输出时序

PWM0S	条件	PWM0 端口输出状态
	PWM0P>PWM0D	输出方波,先输出 PWMOD 个时钟周期高电平,然后 输出 PWMOP-PWMOD 个时钟周期低电平
0	PWM0P≤PWM0D	高电平
	PWM0D = 0, $PWM0P=0$;	高电平
	PWM0D = 0, PWM0P≠0;	低电平
	PWM0P>PWMxD	输出方波,先输出 PWMOD 个时钟周期低电平,然后 输出 PWMOP-PWMOD 个时钟周期高电平
1	PWM0P≤PWMxD	低电平
	PWM0D = 0, $PWM0P=0$;	低电平
	$PWM0D = 0, PWM0P \neq 0;$	高电平

表 8-1: 输出时序 (PWM0SS=1) 表

注意:

- 1. PWM0EN 位控制 PWM0 模块开关。
- 2. PWM0SS 位能选择端口是作为 I/O 端口还是 PWM 输出端口, PWM0SS =1, 但 PWM0EN=0,则相应端口处于输入状态。
- 3. IENO 寄存器中的 EPWM 位和 PWM0CON 寄存器中的 PWM0IE 位会共同控制 PWM0 中断。
- 4. 当 PWMEN0=1, PWM0SS=0 时, PWM0 模块输出关闭, 此时 PWM 模块可用作 16 位定时器, 如果 PWM 中断被使能且 PWM0IE=1,每个 PWM 周期同样会触发中断。

8.4 使用流程

PWM 使用流程:

- 1. 设置寄存器 PWM0xCON. PWM0SS, PWM0 引脚输出允许。
- 2. 设置寄存器 PWM0CON. PWM0S,选择 PWM0 输出模式。
- 3. 设置寄存器 PWM0DL/H, 配置占空比。
- 4. 设置寄存器 PWMOPL/H, 配置重装载值。
- 5. 设置寄存器 PWM0CON. PWM0EN, 使能 PWM0 模块。
- 6. 若需产生中断,则需设置寄存器 PWM0CON. PWM0IE,并设置寄存器 IEN0.EA 和 IEN0.EPWM。

9 GPIO(I/O 端口)

9.1 主要特性

- 最多支持 11 个可编程双向 I/O 端口
- 全部 IO 支持中断功能, 双沿触发
- 内建上拉电阻
- I/O 口可与其他功能共用 最多支持 11 个可编程双向 I/O 端口。

9.2 端口复用

部分端口可复用做其他功能,当第二功能开始时,GPIO 配置为输出状态时依然可读写寄存器, 配置为输入状态时,读无效。

端口	优先级	功能	使能方式
RF_SCL	1	RF_SCL	查看 RF demo 配置
P0.1	1	P0.1	GIO0CEN=1
P0.2	1	NRST	ESTCR[3]=1,P0.2 作为外部复位 RESETN
P0.2	2	P0.2	不存在上述情况
	1	SPI_CSN	SPI_EN=1 且 CS_EN=1,P0.3 作为 SPI_CSN
P0.3	2	LPT_OUT	LPOUT_IO_IEN = 1
	3	P0.3	不存在上述情况
P0.4	1	I2C_SDA	I2CCEN=1 且 P0PU[bit4]=0
FU.4	2	P0.4	不存在上述情况

表 9-1: P0 口复用表

表 9-2: P1 口复用表

端口	优先级	功能	使能方式
	1	PWM0	PWM0SS = 1
P1.0	2	I2C_SCL	I2CCEN=1 且 P1PU[bit0]=0
	3	LPT_IN	LPTIN_IO_IEN = 1
4		P1.0	不存在上述情况
P1.3	P1 3		SPI_EN=1 且 SCK_EN=1,P1.3 作为 SPI_SCK
2		P1.3	不存在上述情况
	1	AIN0	ADCHL[0]=1,P1.4 作为 AIN0
P1.4	2	RX1	UART1_EN = 1,P1.4 作为 RX1
	3	SPI_MOSI	SPI_EN=1 且 MOSI_EN=1,P1.4 作为 SPI_MOSI

端口	优先级	功能	使能方式
	4	P1.4	不存在上述情况
	1	TX1	UART1_EN = 1,P1.5 作为 TX1
	2	AIN1	ADCHL[1]=1,P1.5 作为 AIN1
P1.5	3	SPI_MISO	SPI_EN=1 且 MISO_EN=1,P1.4 作为 SPI_MISO
	4	P1.5	不存在上述情况

	表 9-3: P2 口复用表					
端口	优先级	功能	使能方式			
RF_SDA	1	RF_SDA	查看 RF demo 配置			
WAKE	1	WAKE	查看 RF demo 配置			
P2.2	1	AIN3	ADCHL[3]=1,P2_2 作为 AIN3			
P2.2	2	P2.2	不存在上述情况			
	1	AIN5	ADCHL[5]=1,P2.6 作为 AIN5			
P2.6	2	TX0	UART0_EN = 1,P2.6 作为 TX0			
	3	P2.6	不存在上述情况			
	1	AIN6	ACHH[6]=1,P2.7 作为 AIN6			
P2.7	2	RX0	UART0_EN = 1,P2.7 作为 RX0			
	3	P2 7	不左在 上			

9.3 端口中断

全部端口都支持中断功能,如果使能中断,上升沿或者下降沿均会触发中断,全部端口中断共用 INTO 中断入口。

PxIEN 寄存器控制所有 IO 口中断使能的打开与关闭,如果某一端口的中断功能被打开,那么当 MCU 检测到引脚上出现上升沿或者下降沿则产生外部中断,并且置相应的 PxIRQ 标志位为 1。用户程序可以在外部中断 0 的服务程序内查询是哪个引脚产生了中断标志位。

如果端口中断被使能,那么当 MCU 进入掉电模式时,端口电平的变化,可以中断唤醒 MCU。 **注意事项:**端口中断模式仅支持低功耗模式下的 IO 唤醒,正常模式下不支持端口中断,仅支持 查询 IO 口电平状态(P0/P1/P2)。

9.4 IO_IE

IO IE 寄存器用 xdata 关键字访问。

IO_IE 控制 IO 的输入使能。禁止输入使能后,P0/P1/P2 寄存器无法读取 IO 状态,无法使用输入功能,输出功能正常。

表 9-4: IO_IE 寄存器列表

地址	名称	描述
0xC000	P0_IE	P0 IO输入控制寄存器
0xC001	P1_IE	P1 IO输入控制寄存器
0xC002	P2_IE	P2 IO输入控制寄存器

9.4.1 P0_IE

C000H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0_IE	-	-	-	P0_4_IE	P0_3_IE	P0_2_IE	P0_1_IE	RF_SCL_I E
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	1	1	1	1	1
/ - /	12 At 17	lvk an						
位编号	位符号	说明						
7:5	-	-						
4	P0_4_IE	0: P0_4 禁』	P0_4 IO 输入控制位:): P0_4 禁止输入 I: P0_4 开启输入					
3	P0_3_IE	_ 0: P0_3 禁』						
2	P0_2_IE	_ 0: P0_2 禁』	PO_2 IO 输入控制位: D: PO_2 禁止输入 1: PO 2 开启输入					
1	P0_1_IE	P0_1 IO 输入控制位: 0: P0_1 禁止输入 1: P0_1 开启输入						
0	RF_SCL_I E	RF_SCL 输 <i>。</i> 0:RF_SCL 1:RF_SCL	禁止输入					

9.4.2 P1_IE

C001H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1_IE	-	-	P1_5_IE	P1_4_IE	P1_3_IE	-	-	P1_0_IE
读/写	读	读	读/写	读/写	读/写	读	读	读/写
复位值	0	0	1	1	1	0	0	1
位编号	位符号	说明						
7:6	-	-						
5		P1_5 IO 输力 0: P1_5 禁 1: P1_5 开	止输入					

4	P1_4_IE	P1_4 IO 输入控制位: 0:P1_4 禁止输入 1:P1_4 开启输入
3	P1_3_IE	P1_3 IO 输入控制位: 0: P1_3 禁止输入 1: P1_3 开启输入
2:1	-	-
0	P1_0_IE	P1_0 IO 输入控制位: 0:P1_0 禁止输入 1:P1_0 开启输入

9.4.3 P2_IE

C002H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
P2_IE	P2_7_IE	P2_6_IE	RF_SDA_IE	-	WAKE_IE	P2_2_IE	-	-	
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读	
复位值	1	1	1	0	1	1	0	1	
位编号	位符号	说明							
7	P2_7_IE	0: P2_7	输入控制位: 禁止输入 开启输入						
6	P2_6_IE	0: P2_6	P2_6 IO 输入控制位: D: P2_6 禁止输入 I: P2 6 开启输入						
5	RF_SDA_I	E 0: RF_S	输入控制位: SDA 禁止输入 SDA 开启输入						
4	-	-							
3	WAKE_IE	0: WAK	WAKE 输入控制位: D: WAKE 禁止输入 I: WAKE 开启输入						
2	P2_2_IE	0: P2_2	P2_2 IO 输入控制位:): P2_2 禁止输入 I: P2_2 开启输入						
1:0	-	-							

9.5 IO_SR

IO_SR 寄存器用 xdata 关键字访问。

IO_SR 控制 IO 的 Slew rate。Slew rate 指的是压摆率,又称转换速率,表示 IO 高低电平切换时,边沿上升和下降速度的快慢(边沿斜率的陡峭和缓慢)。

表 9-5: IO_SR 寄存器列表

地址	名称	描述
0xC005	P0_SR	P0 IO速度控制寄存器
0xC005	P1_SR	P1 IO速度控制寄存器
0xC007	P2_SR	P2 IO速度控制寄存器

9.5.1 P0_SR

C005H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
COOSH	Dit/	סונט	טוט	DIL4	טונס	טונב	DILI	
P0_SR	-	-	-	P0_4_SR	P0_3_SR	P0_2_SR	P0_1_SR	RF_SCL_ SR
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	1	1	1	1	1
		1						
位编号	位符号	说明						
7:5	-	-						
		P0_4 IO	速度控制位	Ĭ:				
4	P0_4_SR	0: P0 4	快速					
		1: P0_4	慢速					
		P0 3 IO	速度控制位	Ì:				
3	P0_3_SR	0: P0 3	快速					
		1: P0 3	慢速					
		P0 2 IO	速度控制位	Ĭ:				
2	P0_2_SR	_						
		1: P0 2						
			速度控制位	Ĭ:				
1	P0_1_SR	_						
	_ _	1: P0 1						
			速度控制位	<u>\document</u> :				
0	RF_SCL_SF	_						
		1: RF_S						

9.5.2 P1_SR

C006H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1_SR	-	-	P1_5_SR	P1_4_SR	P1_3_SR	-	-	P1_0_SR
读/写	读	读	读/写	读/写	读/写	读	读	读/写
复位值	0	0	1	1	1	1	1	1
位编号	位符号	说明						
7:6	-	-						
5		P1_5 IO 速原 0: P1_5 快 1: P1_5 慢	速					

4	P1_4_SR	P1_4 IO 速度控制位: 0:P1_4 快速 1:P1_4 慢速
3	P1_3_SR	P1_3 IO 速度控制位: 0:P1_3 快速 1:P1_3 慢速
2:1	-	-
0		P1_0 IO 速度控制位: 0:P1_0 快速 1:P1_0 慢速

9.5.3 P2_SR

C007H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2_SR	P2_7_SR	P2_6_SR	RF_SDA_ SR	-	WAKE_SR	P2_2_SR		-
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读
复位值	1	1	1	0	1	1	0	1
位编号	位符号	说明						
7	P2_7_SI	P2_7 IC		位:				
6	P2_6_SF	R 0: P2_	P2_6 IO 速度控制位: D: P2_6 快速 1: P2 6 慢速					
5	RF_SDA_	SR 0: RF_	A 速度控制 SDA 快速 SDA 慢速	位:				
4	-	-						
3	WAKE_S	R 0: WAŁ	WAKE 速度控制位: 0:WAKE 快速 1:WAKE 慢速					
2	P2_2_SF	R 0: P2_	P2_2 IO 速度控制位:): P2_2 快速 1: P2_2 慢速					
1:0	-	-						_

9.6 使用流程

9.6.1 IO 输出

- 1. 配置系统配置寄存器(PCLK1)的 GPIO 模块时钟。
- 2. 配置系统配置寄存器(PRESET1)的 GPIO 模块复位使能。
- 3. 配置 Px0EN 寄存器,对相应的 Bit 位写入 1,配置对应的 IO 为输出模式。

4. 配置 Px 寄存器, 配置相应的 Bit 位,设置对应的 IO 为输出高/低电平。

9.6.2 IO 输入

- 1. 配置系统配置寄存器(PCLK1)的 GPIO 模块时钟。
- 2. 配置系统配置寄存器(PRESET1)的 GPIO 模块复位使能。
- 3. 配置 Px0EN 寄存器,对相应的 Bit 位写入 0,配置对应的 IO 为输入模式。
- 4. 配置 PxPU 寄存器,对相应的 Bit 位写入 0,使能对应的 IO 口内部上拉电阻。
- 5. 读取 Px 寄存器, 获取相应的 Bit 位, 即对应的 IO 的电平状态。

9.6.3 中断触发模式

- 1. 配置系统配置寄存器(PCLK1)的 GPIO 模块时钟
- 2. 配置系统配置寄存器(PRESET1)的 GPIO 模块复位使能
- 3. 配置 Px0EN 寄存器,对相应的 Bit 位写入 0,配置对应的 IO 为输入模式。
- 4. 配置 PxPU 寄存器,对相应的 Bit 位写入 0,使能对应的 IO 内部上拉电阻。
- 5. 配置 PxIEN 寄存器,对相应的 Bit 位写入 1,使能对应的 IO 端口中断功能。

UM2082F08 用户手册 TIMER0/1(定时器)

10 TIMER0/1(定时器)

10.1 主要特性

- 2 个 16 位自动重载定时器 Timer0/1
- 可选系统时钟和内部低频时钟作为计数源
- 可工作在低功耗模式(Sleep、DeepSleep)

10.2 定时器 0/1 工作方式

定时器 0, 1 的方式完全相同。下面以定时器 0 为例来说明定时器 0, 1 的工作方式。

定时器 0 是 16 位自动重载定时器,可以设置预分频比。定时器 0 有内置 16 位计数/定时寄存器 (TH0, TL0)。当 TH0 和 TL0 被写入时,用作定时器重载寄存器,当被读时,用作计数寄存器,对 TR0 置位可启动定时器。当定时器计至 0XFFFF 时,产生溢出并置位 TF0。同时会触发定时器 0 中断 (仅当定时器 0 中断打开时)并重新装载初始值。

当定时器 0, 1 的时钟源选择 RC32K 时, 定时器 0, 1 可以工作在低功耗模式, 如果使能中断, 可以唤醒 MCU。

TH0 和 TL0 读写操作遵循以下顺序:

- 写操作: 先低位后高位
- 读操作: 先高位后低位

10.3 使用流程

定时器 0 使用流程:

- 1. 配置 TCON 寄存器 TOCLKS 位,选择定时器 0 的计数时钟。
- 2. 配置 TOMD 寄存器 TOPS 位,设置定时器 0 预分频比。
- 3. 配置 TL0 和 TH0 寄存器,设置定时时间。
- 4. 使能 EA 总中断。
- 5. 使能 TIMER0 中断 ET0。
- 6. 配置 TCON 寄存器 TR0 位, 使能定时器 0。

11 UART0/1 (增强型串口)

11.1 特性

- UART0/1 均自带波特率发生器
- UARTO 有四种工作模式
- UART1 有两种工作模式

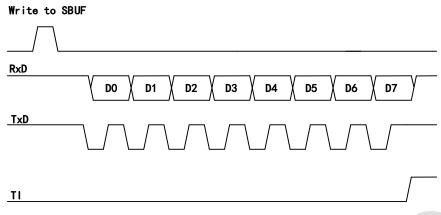
两个串行口分别由一个移位寄存器,一个串行控制寄存器,一个波特率发生器以及两个独立的数据缓冲器(分别用于发送和接收数据)组成。两个数据缓冲器统称为 SOBUF、S1BUF,其共用地址 99H、9CH。向 SOBUF 或 S1BUF 写数据启动串口数据发送,读 SOBUF 或 S1BUF 返回缓冲器已经接收到的数据。

串行口在接收数据时,数据先进入移位寄存器,完成一帧的接收后将数据移入 S0BUF 或 S1BUF, 并立即接收下一帧数据,主机应保证该帧数据接收完成之前将 S0BUF 或 S1BUF 缓冲器中数据取 走,否则将导致前一帧数据被该帧数据覆盖而导致数据丢失。

11.2 UART0 工作模式

UART 有 4 种工作方式。进行通信之前用户须初始化相关寄存器,选择合适的工作方式和波特率。用户可以通过设置 SM0/SM1 来选择不同的工作方式。

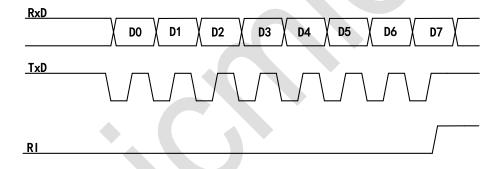
SM0	SM1	Mode	描述	Baud Rate
0	0	0	Shift register	SYSCLK /12
0	1	1	8-bit UART	可配置
1	0	2	9-bit UART	SYSCLK/16
1	1	3	9-bit UART	可配置


表 11-1: UARTO 工作方式列表

● 方式 0: 同步, 半双工通讯

方式 0 支持与外部设备的同步通信。在 RX 引脚上收发串行数据,TX 引脚发送移位时钟。在这个方式中,每帧收发 8 位,低位先接收或发送。

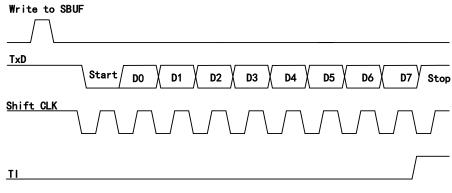
任何将 SBUF 作为目标寄存器的写操作都会启动发送,下一个系统时钟 TX 控制块开始发送。数据转换发生在移位时钟下降沿,移位寄存器内容逐次从左往右移位,空位置 0。发送完成后,TX 控制模块停止发送操作,然后在下一个系统时钟的上升沿将 TI 置位。


版本 V1.1

Transmit Timing of Mode 0

图 11-1: Transmit Timing of Mode 0

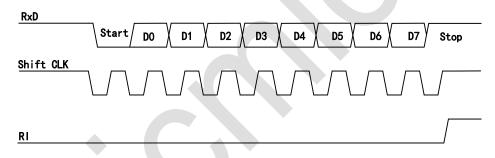
REN 置 1 和 RI 清 0 初始化接收。在移位时钟的上升沿锁存数据,接收转换寄存器的内容逐次向左移位。当所有的 8 位数据都移到移位寄存器后,RX 控制块停止接收,下一个系统时钟上升沿 RI 置位,直到软件清零才允许下一次接收。



Receive Timing of Mode 0

图 11-2: Receive Timing of Mode 0

● 方式 1:8位 UART,可变波特率,异步全双工


方式 1 提供 10 位全双工异步通信, 10 位由一个起始位(逻辑 0), 8 个数据位(低位为第一位), 一个停止位(逻辑 1)组成。在接收时, 8 个数据位保存在 SBUF 中, 停止位保存在 RB8 中。任何将 SBUF 作为目标寄存器的写操作都会启动发送, 起始位首先在 TX 引脚上移出, 然后是8 位数据位。在发送移位寄存器中的所有 8 位数据位都发送完后, 停止位在 TX 引脚上移出, 在停止位发出的同时 TI 标志置位发出中断请求。

Transmit Timing of Mode 1

图 11-3: Transmit Timing of Mode 1

只有 REN 置位时才允许接收。当 RX 引脚检测到下降沿时串行口开始接收串行数据。若起始位有效,则移入移位寄存器,并接着移入其他位到移位寄存器。8 个数据位和 1 个停止位移入之后,移位寄存器的内容被分别装入 SBUF 和 RB8 中,随后 RI 被置位。这时,接收器继续探测 RX 的下一个下降沿。用户需要软件清零 RI,然后才能再次接收。

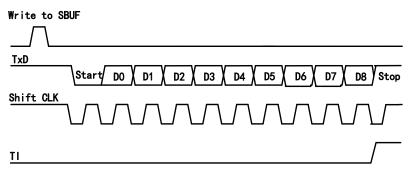
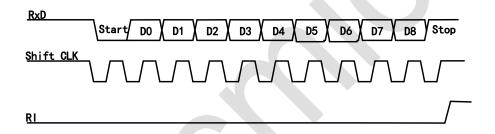

Receive Timing of Mode 1

图 11-4: Receive Timing of Mode 1

● 方式 2:9位 UART, 固定波特率, 异步全双工

方式 2 提供 11 位全双工异步通信,波特率固定为系统时钟的 1/16。一帧由一个起始位(逻辑 0),8 个数据位(低位为第一位),一个可编程第 9 位和一个停止位(逻辑 1)组成。方式 2 和方式 3 支持多机通信功能。


任何将 SBUF 作为目标寄存器的写操作都会启动发送,同时将 TB8 载入发送移位寄存器中的第九位。起始位首先在 TX 引脚移出,然后是 9 位数据位。在所有数据发送完成后,停止位在 TX 引脚上移出,在停止位开始发送时 TI 标志置位发出中断请求。

Transmit Timing of Mode 2

图 11-5: Transmit Timing of Mode 2

只有 REN 置位时才允许接收。当 RX 引脚检测到下降沿时串行口开始接收串行数据。若起始位有效,则移入移位寄存器,并接着移入其他位到移位寄存器。9 个数据位和 1 个停止位移入之后,移位寄存器的内容被分别装入 SBUF 和 RB8 中,随后 RI 被置位。这时,接收器继续探测 RX 的下一个下降沿。用户需要软件清零 RI,然后才能再次接收。

Receive Timing of Mode 2

图 11-6: Receive Timing of Mode 2

● 方式 3: 9 位 UART,可变波特率,异步全双工 方式 3 使用方式 2 的传输协议以及方式 1 的波特率产生方式。

11.3 UART1 工作模式

表 11-2: UART1 工作方式列表

SM	Mode	描述	Baud Rate
0	Α	9-bit UART	可配置
1	В	8-bit UART	可配置

说明: UART1 的这两种方式可以参考 UART0 的方式 3 和方式 1。

11.4 多机通讯

UARTO 的方式 2 和方式 3 以及 UART1 的方式 A 具有多机通讯功能。在采用多机通讯系统时,当主机要发送一数据块给多个从机中的一个时,先发送一个地址字节,以寻址目标从机。地址字节与数据字节可用第 9 位数据位来区别,地址字节的第 9 位为 1,数据字节的第 9 位为 0。接收方根据第 9 位信息判断是否接收,多机通讯过程如下:

设置为主机通信发送流程如下:

- 1. 设置为 9 bit Mode, 发送接收方地址, 且置 TB8 = 1。
- 2. 根据自定义的协议发送数据,且置 TB8 = 0。

设置为主机通信接收流程如下:

- 1. 设置 SM2=0, (无条件接收全部数据)。
- 2. 主机根据自定义协议解析数据。

设置为从机通信接收流程如下:

- 1. 置从机的 SM2=1,处于只接收地址帧状态,此时只会接收第 9bit 为 1 的地址数据。
- 2. 当接收到数据时,软件判断是否与本机设定的串口地址匹配。
- 3. 所有从机接收到地址帧后,各自将接收的地址与本机地址比较:若匹配即为目标从机,清除SM2=0,准备接收主机即将发送的数据帧,接收完毕后再次置SM2=1;若不匹配,保持SM2=1,忽略接下来的所有数据帧,不产生中断请求,直到接收到地址帧再次进行比较确认。

11.5 波特率

UART0 Mode 1 and 3

Baud Rate =
$$\frac{\text{SYSCK}}{16 \times (1024 - \text{SOREL})}$$

UART1

Baud Rate =
$$\frac{\text{SYSCK}}{16 \times (1024 - \text{S1REL})}$$

SYSCLK 为 16M, 常见波特率 SxREL 配置值以及实际误差如下表

目标波特率 误差 SxREL 实际波特率 115200 1015 3.5% 111111 57600 1007 -2.1% 58824 38400 998 38462 -0.2% -0.2% 19200 972 19231 9600 920 -0.2% 9615 4800 816 4808 -0.16%

表 11-3: 波特率误差表

目标波特率	SxREL	实际波特率	误差
2400	607	2398	0.08%

11.6 使用流程

11.6.1 UART0 mode1 使用流程

11.6.1.1 串口初始化

- 1. 配置系统配置寄存器(PCLK0)的串口模块时钟。
- 2. 配置系统配置寄存器(PRESET0)的串口模块复位使能。
- 3. 配置 UARTEN 寄存器, 打开串口引脚复用功能。
- 4. 选择串口的工作模式(SOCON.SMO和 SOCON.SM1位)。
- 5. 写 0 清除中断状态(SOCON.TIO 和 SOCON.RIO 位)。
- 6. 配置 SORELL 和 SORELH 寄存器,设置波特率。
- 7. 使能总中断 (IENO.EA)。
- 8. 使能串口 0 中断 (IEN0.ES0)。
- 9. 使能串口接收(S0CON.REN0)。

11.6.1.2 串口发送字节

- 1. 发送、接收数据前软件可以配置波特率参数,中断使能。
- 2. 写入第一个字节数据到 S0BUF。
- 3. 查询发送完成标志 SOCON.TIO,如果 TIO=1 表示当前数据发送完成;软件清除此位(写 0 清除)。
- 4. 可以继续写入下一个字节到 S0BUF。

11.6.1.3 串口接收字节

- 1. 发送、接收数据前软件可以配置波特率参数,中断使能。
- 2. 接收数据,查询 SOCON.RIO 标志位,如果 RIO=1 则读取 SOBUF 中的数据,软件清除此位 (写 0 清除)。
- 3. 继续接收数据。

UM2082F08 用户手册 UART0/1 (增强型串口)

11.6.2 UART1 modeB 使用流程

11.6.2.1 串口初始化

- 1. 配置系统配置寄存器(PCLK0)的串口模块时钟。
- 2. 配置系统配置寄存器(PRESET0)的串口模块复位使能。
- 3. 配置 UARTEN 寄存器, 打开串口引脚复用功能。
- 4. 选择串口的工作模式(S1CON.SM0和 S1CON.SM1位)。
- 5. 写 0 清除中断状态(S1CON.TIO 和 S1CON.RIO 位)。
- 6. 配置 S1RELL 和 S1RELH 寄存器,设置波特率。
- 7. 使能总中断 (IENO.EA)。
- 8. 使能串口1中断(IEN0.ES1)。
- 9. 使能串口接收(S1CON.REN1)。

11.6.2.2 串口发送字节

- 1. 发送、接收数据前软件可以配置波特率参数,中断使能。
- 2. 写入第一个字节数据到 S1BUF。
- 3. 查询发送完成标志 S1CON.TI1,如果 TI1=1 表示当前数据发送完成;软件清除此位(写 0 清除)。
- 4. 可以继续写入下一个字节到 S1BUF。

11.6.2.3 串口接收字节

- 1. 发送、接收数据前软件可以配置波特率参数,中断使能。
- 2. 接收数据,查询 S1CON.RI1 标志位,如果 RI1=1 则读取 S1BUF 中的数据,软件清除此位 (写 0 清除)。
- 3. 继续接收数据。

UM2082F08 用户手册 SPI

12 SPI

12.1 主要特性

- 支持 SPI 标准协议,主从模式可配。
- MISO、MOSI,单线传输,支持半双工、全双工传输,支持数据大小端配置。
- 可编程时钟极性和相位。
- 支持 TX_ONLY 模式传输。
- 支持 PCB 板延时补偿功能, slave 模式下, 支持 SSN/SCK/MOSI 输入信号的组合逻辑滤波功能。

12.2 寄存器描述

SPI 寄存器用 xdata 关键字访问。

SPI 寄存器基地址: 0xC400

表 12-1: SPI 寄存器列表

地址	名称	描述
C400	SPCR1	控制寄存器1
C401	SPCR2	控制寄存器2
C402	SPCR3	控制寄存器3
C403	SPCR4	控制寄存器4
C404	SPIIE	中断使能寄存器
C405	SPSR	状态寄存器
C406	TXBUF	发送数据寄存器
C407	RXBUF	接收数据缓冲寄存器

12.2.1 SPCR1 控制寄存器

C400	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPCR1	BR[2:0]			SSN_MODE	LSBFIRST	MSTR	CPOL	СРНА
读/写	读/写			读/写	读/写	读/写	读/写	读/写
复位值		1		0	0	1	0	0
位编号	位符号	说明						

7:5	BR[2:0]	master 模式波特率配置位: 000: f _{SYSCLK} /2 001: f _{SYSCLK} /4 010: f _{SYSCLK} /8 011: f _{SYSCLK} /16 100: f _{SYSCLK} /32 101: f _{SYSCLK} /64 110: f _{SYSCLK} /128 111: f _{SYSCLK} /256 当通信正在进行的时候,不能修改这些位 在 Master 模式下,SSN_MODE 表示在每传完 8Bit 后,SSN 是否会被拉
4	SSN_MODE	在 Master 模式下,SSN_MODE 表示在每16完 oblt 后,SSN 是否会被拉高: 0:在 Txbuf 为非空,且已经发送完毕 8Bit,如果 WAIT_CNT 不为 0,在等待 1+WAIT_CNT 个 SCK Cycle 后,SSN 被拉高 1:在 Txbuf 为非空,且已经发送完毕 8Bit,SSN 被拉高
3	LSBFIRST	帧格式 (Frame format): 0: 先发送MSB (Bit7) 1: 先发送LSB (Bit0) 注: 当通信在进行时不能改变该位的值
2	MSTR	Master/Slave 模式选择 : 0:slave 1:master
1	CPOL	时钟极性选择: 0:串行时钟 stop 在低电平 1:串行时钟 stop 在高电平 注:当通信在进行时不能改变该位的值
0	СРНА	时钟相位选择: 0:第一个时钟边沿是第一个捕捉边沿 1:第二个时钟边沿是第一个捕捉边沿 注:当通信在进行时不能改变该位的值

注:

- 当出现 ERROR 后,该寄存器保持不变,若需要重新启动 spi,软件先写 spi_en 为 0,再写为 1.
- 改变 CPOL, CPHA 后需要重新启动 spi, 软件先写 spi_en 为 0, 再写为 1。

12.2.2 SPCR2 控制寄存器

C401	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPCR2	SAMPLE_P	TXONLY_AUTO_CLR	SPI_EN	SSN_MCU_EN	WAIT	_CNT	RFU	RFU
读/写	读/写	读/写	读/写	读/写	读	/写	读	读
复位值	0	1	0	0	()	0	0
位编号	位符号	说明						

7	SAMPLE_P Sdin_sample_mode	Master 模式下,对 Slave 输出的 MISO 信号采样点位置的选择 SamplePosition。 0: 采样点与协议一致 1: 波特率速度低于 fsysclk /2 时,采样点延后半个 spi sck 周期。 注: 当波特率为 fsysclk /2 的时候,该位不起作用。
6		TXONLY 硬件自动清空的使能 0:关闭 TXONLY 硬件自动清零 1:TXONLY 硬件自动清零有效,软件打开 SPCR2 的 TXONLY 后,等待 发送完毕后,硬件清零
5	SPI_EN	SPI 使能。采用关闭时钟的方式来关闭使能。 0:关闭 SPI。复位状态、清空 TxBuf 清空 RxBuf 1:使能 SPI
4	SSN_MCU_EN	在Master模式下,由软件控制SSN端口的使能: 1:由软件控制SSN输出,使能有效 0:由内部硬件控制 SSN 输出
3:2	WAIT_CNT	在 Master 模式下,每发完 8Bit 后加入 WAIT 再传输下一个 8Bit 的数据00: 无等待01: 中间加入 2 个 SCK Cycle 等待10: 中间加入 3 个 SCK Cycle 等待11: 中间加入 4 个 SCK Cycle 等待
1:0	RFU	保留

注: 当出现 ERROR 后,该寄存器保持不变,若需要重新启动 spi,软件先写 spi_en 为 0,再写为 1。

12.2.3 SPCR3 控制寄存器

	C402	Bit7	Bit6	,	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	SPCR3	SCK_EN	MOSI_	EN	MISO_EN	CS_EN	TX_ONLY	SSN_MCU	Signal_filter	send_p
Ī	读/写	读/写	读/写	5	读/写	读/写	读/写	读/写	读/写	读/写
	复位值	1	1		1	1	0	1	1	0
Γ						-				
	位编号	位符	号	说明						
	7	SCK_	H [X]	_	3 作为 SPI_S 3 作为 SPI_S			:位为 1,且	SPI_EN 为 1	时,
	6	MOSI_	_EN	_	4 作为 SPI_M SPI_MOSI ⁽		号使能。当此	公位为 1 , 且:	SPI_EN 为 1	时, P1_4
	5	MISO_	HINI .	_	5 作为 SPI_M SPI_MISO		号使能。当此	公位为 1, 且 :	SPI_EN 为 1	时, P1_5
	4	CS_E	ΞN	_	3 作为 SPI_0 SPI_CSN 信		 位为 1, 且 S	SPI_EN 为 1	时,P0_3	
	3	TX_OI	NLY	限制 0:						

2	SSN MCH	在 Master 模式下, 如果 SSN_MCU_EN =1, MCU 可以通过写此位控制 SSN 输出端口: 0: SSN 被软件写成 0 1: SSN 被软件写成 1
1		是否对 SSN/SCK/MOSI 上可能产生的毛刺数字滤波 0: 不滤波 1: 滤波
0	send b	SLAVE 模式下,对 slave 输出的 MOSI 信号使用 transmit 起始点时钟 0:按照协议的时钟点进行发送 1:提前半个周期进行发送

注: 当出现 ERROR 后,该寄存器保持不变,若需要重新启动 spi,软件先写 spi_en 为 0,再写为 1。

12.2.4 SPCR4 控制寄存器

C403	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SPCR4	-	-	-		CLR_TXBUF	CLR_RXFBUF	-	-		
读/写	读	读	读	读	写	写	读	读		
复位值	0	0	0	0	0	0	0	0		
位编号	位符	号	兑明							
7:4	_	-								
3	CLR_T	XBUEL	写 1 清除 tx_ 回 0	6 1 清除 tx_buf 所有内容,并且清除 TXBUF_EMPTY 标志位,硬件自动 3 0						
2	CLR_R	XBUF 0	6 1 清除 rx_buf 所有内容,并且清除 RXBUF_FULL 标志位,硬件自动回							
1-0	_	-			_					

注: 当出现 ERROR 后,TXONLY 位会被硬件自动重置为 0。所以,当重新启动 spi 时,该寄存器需要重新配置。

12.2.5 SPIIE 中断使能寄存器

C404	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SPIIE	RFU	RFU	RFU	RFU	RFU	ERROR_I E	TX_E_IE	RX_NE_ IE	
读/写	读	读	读	读	读	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
42./± E		W ==							
位编号	位符号	说明							
7:3	1	-							
2		0: 关掉「	A HAK L DUT						

UM2082F08 用户手册 SPI

1	TX_E_IE	发送 TXBUF 空中断使能: 0: 关掉中断 1: 使能中断
0	RX_NE_IE	接收 RXBUF 非空中断使能: 0:关掉中断 1:使能中断

12.2.6 SPSR 状态寄存器

C405	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPSR	-	1	1	RXBUF_WCOL	TXBUF_WC OL	BUSY	TXBUF_E MPTY	RXBUF_ FULL
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	1	0
位编号	位往	守号	说明					
7:5		-	-					
4	RXBUF	_WCOL	RX 溢出	出,软件写 0 清 0				
3	TXBUF	_WCOL	当 TXB 1: 冲突 0: 无冲 软件写	· '突	J 进行写 TXBL	JF 操作:		
2	BU	ISY	1: 表示	TXBUF 为空,追 TXBUF 不为空, 过式下根据 SSN 和	或者 SPI 在何	专输数据	L TXBUF 为氢	È, BUSY

写 txbuf 动作可清除该标志位:

1:TXBUF 中无数据,可以写入 读 rxbuf 动作可清除该标志位:

12.2.7 TXBUF 发送数据寄存器

RXBUF_FULL

信号为0

TXBUF_EMPTY 0: TXBUF 中有数据等待发送

0: RXBUF 中无数据 1: RXBUF 中有数据

MCU 把需要发送的数据写入该寄存器,达到把发送数据缓存到 TxBuf 的目的。TxBuf 无实际寄存器,只支持写操作。

C406	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TXBUF	WR_DATA								
读/写				写					
复位值		0							
位编号	位符号 说明								

1

0

UM2082F08 用户手册 SPI

7:0	WR_DATA	该寄存器在写的时候,根据 TxBuf 的空满状态,如果 TxBuf 已经为满,将产生溢出中断
-----	---------	--

12.2.8 RXBUF 接收数据缓冲寄存器

通过 Spi 接口接收的数据,会先缓存到 RxBUF 中,当 Spi 接口完成一个字节的接收后,会往 RXBUF 写入一个字节的数据。MCU 通过读该寄存器,可以得到从 Spi 接收到的数据。

C407	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
RXBUF	D7-D0										
读/写				读							
复位值		0									
位编号	位符号				说明			•			
7:0	1 1 1 / - 1 1 ()	MCU 根排 RxBuf 中		的非空中	『断,对该』	也址进行读	操作,读到区	勺部			

12.3 使用流程

12.3.1 SPI 初始化

- 1. 配置 PCLK0.SPICEN 为 1, SPI 时钟使能。
- 2. 配置 PRESETO.SPIREN 为 1, SPI 复位释放。
- 3. SPI 主模式初始化:
 - A. 配置 SPCR1.MSTR 为主模式。
 - B. 配置 SPCR1.LSBFIRST 选择帧格式。
 - C. 配置 SPCR1.BR[2:0]选择波特率分频。
 - D. 配置 SPCR1.CPOL 和 SPCR1.CPHA 选择 SPI 工作模式 0/1/2/3。
 - E. 配置 SPCR2.SSN MCU EN 选择软件控制 SSN(片选)。
 - F. 配置 SPCR2.SPIEN 使能 SPI。
- 4. SPI 从模式初始化:
 - A. 配置 SPCR1.MSTR 为从模式。
 - B. 配置 SPCR1.LSBFIRST 选择帧格式。
 - C. 配置 SPCR1.CPOL 和 SPCR1.CPHA 选择 SPI 工作模式 0/1/2/3。
 - D. 配置 SPCR2.SPIEN 使能 SPI。

12.3.2 SPI 发送流程

1. 等待 SPSR.TXBUF_EMPTY 置 0。

- 2. 往 TXBUF 发送数据寄存器写入数据。
- 3. 等待 SPSR.BUSY 置 0(从模式不需要等这一步)。

12.3.3 SPI 接收流程

- 1. 等待 SPSR.RXBUF_FULL 置 1。
- 2. 读取 RXBUF 接收数据寄存器。

13 LPTIM(低功耗定时器)

13.1 概述

LPTIM 是运行在 Always-On 电源域下的 16bits 低功耗定时/计数器模块。通过选择合适的工作时钟,LPTIM 在各种低功耗模式下保持运行,并且只消耗很低的功耗。LPTIM 甚至可以在没有内部时钟的条件下工作,因此可实现休眠模式下的外部脉冲计数功能。

13.2 主要特性

- 16bit upcounter
- 3bit 异步时钟预分频器, 8 种分频系数(1、2、4、8、16、32、64、128)
- 可选工作时钟:
- 内部时钟源: LSCLK(RCL32K)、RCLP(CLK_1HZ)、系统时钟
- 外部时钟源: LPTIN (带有模拟滤波)
- 16bit 比较寄存器
- 16bit 目标值寄存器
- 输入极性选择
- 无时钟外部脉冲计数
- 支持 16bit PWM

13.3 工作模式

13.3.1 普通定时器

- 使用内部时钟或外部时钟输入工作
- 使能后有两个计数时钟的同步过程
- 使能后即开始工作,不需要 trigger 触发

13.3.2 外部异步脉冲计数

- 直接使用外部输入脉冲作为计数工作时钟
- 输入极性可配置,实现上升沿计数或下降沿计数
- 不需要 trigger 触发
- 使能后无同步过程

13.3.3 计数模式

LPTIM 有两种计数模式。

● 连续计数模式:计数器被触发后保持运行,直到被关闭为止。计数器达到目标值后回到 0 重新 开始计数,并产生溢出中断。

● 单次计数模式: 计数器被触发后计数到目标值后回到 0, 并自动停止, 产生溢出中断。

由于溢出信号和 Ipten 使能信号位于不同的时钟域,关闭使能信号采用异步复位同步释放的方式实现。

13.3.4 16bit PWM

使能 PWM 模式后 LPTIM 从 0x0000 开始计数,计数值等于比较值时输出置高,计数值等于终值寄存器时输出变低;PWM 周期由终值寄存器决定,占空比由比较值寄存器决定。

13.4 寄存器描述

LPTIMER 寄存器用 xdata 关键字访问。LPTIMER 寄存器基地址: 0xC800。

地址	名称	描述
0xC800	LPTCFG0	LPTIM 配置寄存器
0xC801	LPTCFG1	LPTIM 配置寄存器
0xC802	LPTCNTL	LPTIM 计数低位寄存器
0xC803	LPTCNTH	LPTIM 计数高位寄存器
0xC804	LPTCMPL	LPTIM 比较值低位寄存器
0xC805	LPTCMPH	LPTIM 比较值高位寄存器
0xC806	LPTTARGETL	LPTIM 目标值低位寄存器
0xxC807	LPTTARGETH	LPTIM 目标值高位寄存器
0xC808	LPTIE	LPTIM 中断使能寄存器
0xC809	LPTIF	LPTIM 中断标志寄存器
0xC80A	LPTCTRL	LPTIM 控制寄存器

表 13-1: LPTIMER 寄存器列表

13.4.1 LPTCFG0 寄存器

C800H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
LPTCFG0	-	-	EDGESEL CLKSEL DIVSEL							
读/写	读/写	读/写	读/写 读/写 读/写							
复位值	0	0	0	1	0		0			
位编号	位符号	说明	说明							
7	-	-								

UM2082F08 用户手册 LPTIM(低功耗定时器)

6	-	-
5		LPTIN 输入边沿选择: 0:LPTIN 的上升沿计数 1:LPTIN 的下降沿计数
4:3		时钟源选择: 00: LSCLK (RCL32K)作为计数时钟 01: RCLP (CLK_1HZ)作为计数时钟 10: 系统时钟作为计数时钟 11: LPTIN (外部输入)作为计数时钟
2:0		计数时钟分频选择: 000: 1 分频 001: 2 分频 010: 4 分频 011: 8 分频 100: 16 分频 101: 32 分频 110: 64 分频 111: 128 分频

13.4.2 LPTCFG1 寄存器

C801H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LPTCFG1	-	LPOUT_IO _IEN	LPTIN_I O_IEN	TMODE		MODE	PWM	POLARIT Y	
读/写	读/写	读/写	读/写	读	/写	读/写	读/写	读/写	
复位值	0	0	0	O)	0	0	0	
/ 上心 口		77 10							
位编号	位符号	说明							
7	-	-							
6	LPOUT_IO_IEN								
5	LPTIN_IO_IEN	1: P1_01	乍为 LPTIN	1					
4:3	TMODE	00: 带波形01: 保留	10:外部异步脉冲计数模式						
2	MODE	达到目标位 1:单次计							
1	PWM	脉宽调制机 0: 周期方 1: PWM	波输出模式	<u>.</u>					
0	POLARITY	计数时钟分 0: 正极性 1: 负极性	波形,即第		值=比较值 值=比较值				

UM2082F08 用户手册 LPTIM(低功耗定时器)

13.4.3 LPTCNT 计数值寄存器

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LPTCNTL(C	LPTCNTL(C802H) CNT16[7:0]									
LPTCNTH(C	803H)	H) CNT16[15:8]								
读/写			读							
复位值					0					
位编号		位符号	说明							
15:0		CNT16	计数器数	计数器数值						

13.4.4 LPTCMP 比较值寄存器

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LPTCMPL(C	804H)	COMPARE_REG[7:0]								
LPTCMPH(C	(805H		COMPARE_REG[15:8]							
读/写			读/写							
复位值	Ī				0					
位编号		位符号	说明							
15:0	СОМ	PARE_REG	比较值寄存器							

13.4.5 LPTTARGET 目标值寄存器

		Bit7	it7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1						
LPTTARGET	TL(C806H)	TARGET_REG[7:0]							
LPTTARGE1	ГН(С807Н)	TARGET_REG[15:8]							
读/	写				读/	写			
复位	:值				0				
位编号	位符	号访	} <mark>说明 </mark>						
15:0	TARGET	Γ_REG E	G 目标值寄存器						

UM2082F08 用户手册 LPTIM(低功耗定时器)

13.4.6 LPTIE 中断使能寄存器

中断使能寄存,中根据此寄存器的使能产生中断

C808H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LPTIE		-				-	OVIE	COMPIE	
读/写		谆	Ę			读/写	读/写	读/写	
复位值		C)			0	0	0	
位编号	位符号				说明				
7:2	-	-							
1	OVIE	1: 计数器							
0	COMPIE		塔值和比 车	位: 交值匹配中 交值匹配中					

13.4.7 LPTIF 中断标志寄存器

C809H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTIF		-				-	OVIF	COMPIF
读/写		谆	ķ			读/写	读/写	读/写
复位值		C)			0	0	0
位编号	位符号	说明						
7:2	-	-						
1	OVIF		器溢出中 图	志位,写 断产生	1清零:			
0	COMPIF	1: 计数器		位,写 1 交值匹配中				

13.4.8 LPTCTRL 控制寄存器

C80AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTCTRL				-				LPTEN
读/写				-				读/写
复位值				0				0

位编号	位符号	说明
7:1	-	-
0	LPTEN	LPTIM 使能位: 1:使能计数器计数 0:禁止计数器计数

13.5 使用流程

13.5.1 普通定时器

- 1. 配置系统配置寄存器(PCLK0)的 LPTIMER 模块时钟使能。
- 2. 配置系统配置寄存器(PRESET0)的 LPTIMER 模块复位释放。
- 3. 配置 LPTCFG0 寄存器 CLKSEL 位,选择时钟源。
- 4. 配置 LPTCFG0 寄存器 DIVSEL 位,设置时钟分频值。
- 5. 配置 LPTCFG1 寄存器 TMODE 位,选择普通定时器模式。
- 6. 配置 LPTCFG1 寄存器 MODE 位,选择计数模式。
- 7. 配置目标值寄存器 LPTTARGETL 和 LPTTARGETH,设置定时时间。
- 8. 使能 LPTIMER 中断 IEN1。
- 9. 配置 LPTIE 寄存器 OVIE 位, 使能定时器溢出中断。
- 10. 配置 LPTCTRL 寄存器 LPTEN 位,启动计数器计数。

13.5.2 PWM 输出

- 1. 配置系统配置寄存器(PCLK0)的 LPTIMER 模块时钟使能。
- 2. 配置系统配置寄存器(PRESET0)的 LPTIMER 模块复位释放。
- 3. 配置 LPTCFG0 寄存器 CLKSEL 位,选择时钟源。
- 4. 配置 LPTCFG0 寄存器 DIVSEL 位,设置时钟分频值。
- 5. 配置 LPTCFG1 寄存器 TMODE 位,选择普通定时器模式。
- 6. 配置 LPTCFG1 寄存器 MODE 位,选择计数模式。
- 7. 配置 LPTCFG1 寄存器 PWM 位,选择 PWM 输出模式。
- 8. 配置 LPTCFG1 寄存器 POLARITY 位,选择 PWM 极性。
- 9. 配置目标值寄存器 LPTTARGETL 和 LPTTARGETH,设置 PWM 的周期时间。
- 10. 配置目标值寄存器 LPTCMPL 和 LPTCMPH,设置 PWM 占空比时间。
- 11. 配置 LPTCFG1 寄存器 LPOUT IO IEN 位,将 P03 复用为 LPOUT 输出。
- 12. 配置 LPTCTRL 寄存器 LPTEN 位,启动计数器计数。

13.5.3 外部异步脉冲计数模式

- 1. 配置系统配置寄存器(PCLK0)的 LPTIMER 模块时钟使能。
- 2. 配置系统配置寄存器(PRESET0)的 LPTIMER 模块复位释放。
- 3. 配置 LPTCFG0 寄存器 CLKSEL 位,选择时钟源为 LPTIN。

- 4. 配置 LPTCFG0 寄存器 DIVSEL 位,设置时钟分频值。
- 5. 配置 LPTCFG1 寄存器 TMODE 位,选择外部异步脉冲计数模式。
- 6. 配置 LPTCFG1 寄存器 MODE 位,选择计数模式。
- 7. 配置 LPTCFG0 寄存器 EDGESEL 位,选择 LPTIN 输入边沿选择方式。
- 8. 配置目标值寄存器 LPTTARGETL 和 LPTTARGETH,设置定时时间。
- 9. 配置 LPTCFG1 寄存器 LPTIN IO IEN 位,将 P10 复用为 LPTIN 输入。
- 10. 使能 LPTIMER 中断 IEN1。
- 11. 配置 LPTIE 寄存器 OVIE 位,使能定时器溢出中断。
- 12. 配置 LPTCTRL 寄存器 LPTEN 位, 启动计数器计数。
- 注:此模式可唤醒 Stop 模式。

14 I2C

14.1 概述

I2C 总线接口连接微控制器和串行 I2C 总线。I2C 模块接收和发送数据,并将数据从串行转换成并行,或并行转换成串行。I2C 模块通过数据引脚 SDA 和时钟引脚 SCL 连接到 I2C 总线,控制所有 I2C 总线规定的时序。本模块支持主模式和从模式。

14.2 主要特性

- I2C 主设备功能
- I2C 从设备功能:
 - ▶ 可编程的 I2C 从设备地址
 - ▶ 可编程的 NACK/ACK 回复
- 输入 SCL 总线滤波功能
- 支持 Standard/Fast 模式
- 支持 7bit 设备地址
- 支持多主模式

14.3 寄存器描述

I2C 寄存器用 xdata 关键字访问。

I2C 寄存器基地址: 0xCC00

表 14-1: I2C 寄存器列表

地址	名称	描述
0xCC00	I2C_SLAVE_ADDR1	I2C设备地址寄存器1
0xCC01	I2C_CLK_DIV	I2C的SCL速率分频
0xCC02	I2C_CR0	控制寄存器0
0xCC03	I2C_CR1	控制寄存器1
0xCC04	I2C_SR0	状态寄存器0
0xCC05	I2C_SR1	状态寄存器1
0xCC06	I2C_DR	数据寄存器
0xCC07	I2C_SLAVE_ADDR2	I2C设备地址寄存器2

14.3.1 I2C_SLAVE_ADDR1 从设备地址寄存器 1

CC00H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
I2C_SLAVE_ADDR1		ADD1[7:1]							
读/写		读/写							
复位值		0							
位编号	位符号	说明							
7:1	ADD1[7:1]	地址的	地址的 7~1 位						
0	-	-							

14.3.2 I2C_CLK_DIV 时钟分频寄存器

CC01H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
I2C_CLK_D	IV	I2C_CLK_DIV								
读/写		读/写								
复位值		0								
位编号	位符号	说明								
7:0	I2C_CLK_D					2C 的传输证 字器值+1)				

14.3.3 I2C_CR0 控制寄存器 0

CC02H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
I2C_CR0	MAAS1_INT_ En	MIEN	RSTA	TACK	MTX	MSTA	1	MEN		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7	MAAS1_INT_	En 0: MAAS	MAAS1(接收到的设备地址与从设备地址寄存器1相符)中断使能: 0:MAAS1中断不使能 1:MAAS1 中断使能							
6	MIEN	0: MTF中	MTF(字节数据(包括地址)传输完成)中断使能: 0: MTF中断不使能 1: MTF 中断使能							
5	RSTA	RSTA产生 0:不产生 1:写该位	Repeat S	tart条件 送或接收完	一个字节后	i,产生一·	个 Start。			

4	TACK	传输应答位/STOP条件位; 对于主模式: 0:接收一字节后,在应答周期产生ACK; 1:主设备在发送完当前字节后,将产生一个STOP; 对于从模式: 0:接收一字节后,在应答周期产生ACK; 1:接收完一字节后,在应答周期产生 NACK。
3	MTX	0:设备作为接收器 1:设备作为发送器 当作为从设备时,处理器应该查询 I2C_SR 的 SRW 位,判断是作为发 送器还是接收器,然后设置与之匹配的 MTX 位
2	MSTA	主从设备选择位,START位 0: 从模式 1: 主模式。 如果这位从 0 变成 1 时,模块产生一个 START 条件。当 STOP 条件产 生时,MSTA 将被清零。当从地址匹配(MAAS1 或 MAAS2 为 1)时, MSTA 也被清零。
1	-	-
0	MEN	0: 设备不使能 1: 设备使能

14.3.4 I2C_CR1 控制寄存器 1

CC03H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I2C_CR1	-	MTX_ANTO _EN	OD_MO DE	-	MAAS2_I NT_EN	WBT_IN T_EN	RXNE_I NT_EN	TXE_INT _EN
读/写	读	读/写	读/写	读	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7	-	-						
6	当此模块 SLAVE 模式下,传输数据和地址 SDA 线自动切换。当此模块 SLAVE 模式下,此位设置为 1,主设备传输完地址信息后,根据总线上 MTX_ANTO_EN 的 RW 位,自动切换 SDA 传输方向。 0:不使能自动切换功能 1:使能自动切换功能							
5	OD_MODE	SCL与SE 0: push-p 1: open-c	ull 模式输	出				
4	-	-						
3	MAAS2_INT_E	N 0: MAAS	MAAS2(接收到的设备地址与从设备地址寄存器 2 相符)中断使能: 0: MAAS2 中断不使能 1: MAAS2 中断使能					
2	WBT_INT_EN		中断不使能	战且 TXE 或 ⋮	RXNE 为	1)中断使	·····································	

1	RXNE_INT_EN	RXNE(接收时数据寄存器非空)中断使能: 0:RXNE 中断不使能 1:RXNE 中断使能
0	TXE_INT_EN	TXE(发送时数据寄存器空)中断使能: 0:TXE 中断不使能 1:TXE 中断使能

14.3.5 I2C_SR0 状态寄存器 0

CC04H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
I2C_SR0	MAAS2	MTF	MAAS1	MBB	RFU	SRW	MTF_H	RACK	
读/写	读/写	读/写	读/写	读	读	读	读/写	读	
复位值	0	0	0	0	0	0	0	1	
 位编号	位符号	说明							
7	MAAS2	0:设备地址2和接收到的地址不相等 1:设备地址2和接收到的地址相等 写1清0							
6	MTF	0: 字节传输未完成 1: 字节传输完成 当一个字节数据(包括地址)正在传输时,该位为 0; 在一个字节传输完后,在第 9 个 SCL 时钟下降沿(ACK 周期)MTF 被置为 1。比 MTF_H 晚半个周期 SCL 周期,写 1 清除							
5	MAAS1	0: 设备地址1和接收到的地址不相等 1: 设备地址1和接收到的地址相等 写1清0							
4	MBB	0: 总线上无数 1: 总线上正在						青 1)	
3	RFU	保留							
2	SRW	0:不作为从记 1:作为从设 当地址匹配后 效:一个完整 从模式,且从 位自动清除	备发送器 ,SRW 指 的传输已约	6示地址呼呼 经发生,没	有其他传输	被初始化	; 并且 I2C	被配置为	
1	MTF_H	快速字节传输完全完成标志: 0:快速字节传输未完成(提早半个SCL时钟) 1:快速字节传输完成。MTF_H在第9个SCL时钟上降沿(ACK周期)产生,比MTF早半个周期 通过对此位写 1 或写 MTF 为 1 清除							
0	RACK	应答接收状态 0:最近的发达 1:最近的发达 只有 START:	送应答周期 送应答周期	没有接收到	间应答				

14.3.6 I2C_SR1 状态寄存器 1

CCOELL	D:47	D:40	D:45	D:44	D:40	D:40	D:44	D:40		
CC05H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
I2C_SR1			-			WBT	RXNE	TXE		
读/写			读			读/写	读/写	读/写		
复位值			0			0	0	0		
		1								
位编号	位符号	位符号								
7:3	-	_								
2	WBT	0:字节传输未完成或字节传输完成但TXE,RXNE不为1 WBT 1:字节传输完成且TXE或RXNE为1 通过读写数据寄存器I2C_DR可以清除该位,也可以写1清0								
1	0:接收时数据寄存器空 RXNE 1:接收时数据寄存器非空 硬件置位,通过读数据寄存器I2C_DR可以清除该位,写1清0									
0	TXE	0:发送时数抗 1:发送时数抗 硬件置位,通	居寄存器空	3	_DR 可以清	情除该位, "	写1清0			

14.3.7 I2C_DR 数据寄存器

CC06H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
I2C_DR		I2CDR								
读/写		读/写								
复位值					0					
位编号	位符号	说明	说明							
7:0	I2CDR	DR I2C 数据寄存器值								

14.3.8 I2C_SLAVE_ADDR2 从设备地址寄存器 2

CC07H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
I2C_SLAVE_ADDR2		ADD2[7:1]								
读/写		读/写								
复位值		0								
位编号	位符号	说明								
上がって	1417 万	近切								
7:1	ADD2[7:1]	地址的	地址的 7~1 位							
0	ADDR2_EN	0. SLAVE ADDR2地址匹配不佳能								

14.4 功能描述

14.4.1 模式选择

该模块默认为从模式,当软件发起START操作后设备变成主模式。主模式时,I2C接口启动数据传输并产生时钟信号,并可以发出STOP信号停止传输。从模式时,I2C接口能识别它自己的地址(7位)。数据和地址按8位/字节进行传输,高位在前。跟在起始条件后的是地址。地址只在主模式发送。在一个字节传输的8个时钟后的第9个时钟期间,接收器必须回送一个应答位(ACK)给发送器。如下图所示:

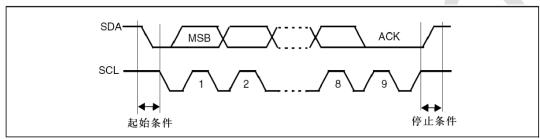
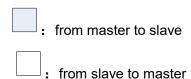


图 14-1: I2C 通信时序图

14.4.2 I2C 从模式

一旦检测到起始条件,在SDA线上接收到的地址被送到移位寄存器。然后与芯片自己的设备地址相比较,如果地址不匹配I2C将其忽略并等待另一个起始条件。如果地址匹配,则此控制器会检测当前操作是发送还是接收(SRW寄存器),I2C接口进行如下操作:

● 从发送器:


发送器将字节从数据寄存器load到内部移位寄存器发送到SDA线上,并产生数据寄存器空标志 TXE、软件需要更新数据寄存器来清除TXE标志。

当收到应答脉冲后,如果在下一个数据发送结束之前新数据仍然没有被写进数据寄存器,即TXE仍然为1,则字节等待标志位(WBT)被置1,这时I2C接口保持SCL为低以等待新的数据被写进数据寄存器。

图 14-2: 7位从发送器的传送图

说明: S=Start(起始条件), P=Stop(停止条件), A=响应, NA=非响应

● 从接收器:

在接收到数据后,从接收器将通过内部移位寄存器从SDA线接收到的字节latch到数据寄存器, 并产生数据寄存器非空标志RXNE,软件需要读出数据寄存器的值来清除RXNE标志。

I2C接口在接收到每个字节后都产生一个应答脉冲。

如果在接收新数据前数据寄存器的值未被读出,即RXNE仍然为1,则字节等待标志位 (WBT) 被置1,这时I2C接口保持SCL为低以等待数据寄存器的值被读出。

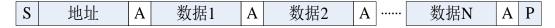


图 14-3: 7位从接收器的传送图

说明: S=Start(起始条件), P=Stop(停止条件), A=响应, NA=非响应

● 关闭从通信

在传输完最后一个数据字节后,主设备发出一个停止操作,I2C接口检测到这一条件时释放 SCL和SDA线。

14.4.3 I2C 主模式

在主模式时,I2C接口启动数据传输并产生时钟信号。串行数据传输总是以起始条件开始并以 停止条件结束。当通过START位在总线上发起起始操作,设备就进入了主模式。

以下是主模式的操作顺序:

- 1. 配置时钟控制寄存器。
- 2. 配置数据寄存器(内部为从设备的地址和读写控制位)。
- 3. 配置控制寄存器的MSTA位为1,产生起始条件。

● 主发送器

发送了地址后,主设备通过内部移位寄存器将字节从数据寄存器load到SDA线上,并产生数据寄存器空标志TXE、软件需要更新数据寄存器来清除TEX标志。

收到应答脉冲后确认新的数据已经发送到数据寄存器。如果在下一个数据发送结束之前新数据仍然没有被写进数据寄存器,即TXE仍然为1,则字节等待标志位(WBT)被置1,这时I2C接口保持SCL为低以等待新的数据被写进数据寄存器。

主设备发出STOP信号产生停止条件。

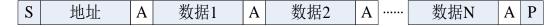


图 14-4: 7 位主发送器的传送图

说明: S=Start(起始条件), P=Stop(停止条件), A=响应, NA=非响应

● 主接收器

发送了地址后,I2C接口从SDA线接收数据字节,并通过内部移位寄存器latch到数据寄存器, 产生数据寄存器非空标志RXNE,软件需要读出数据寄存器的值来清除RXNE标志。

如果在接收新数据前数据寄存器的值未被读出,即RXNE仍然为1,则字节等待标志位 (WBT) 被置1,这时I2C接口保持SCL为低以等待数据寄存器的值被读出。

在每接收一个字节后发出一个应答脉冲并确认数据寄存器里的值已经被取走。

主设备在从从设备接收到最后一个字节后发送一个NACK。收到NACK后,从设备释放SCL线和SDA线的控制。主设备就可以发送一个停止/重开始条件。

图 14-5: 7位主接收器的传送图

● 时钟延长

- ➢ 发送模式: 当数据寄存器里的数据没有被更新时,把 SCL 拉低以等待新的数据写入。
- ▶ 接收模式:当数据寄存器里的数据没有被读走时,把 SCL 拉低以等待旧的数据被读走。

14.5 使用流程

14.5.1 I2C 初始化

- 1. 配置 PCLK0.I2CCEN 为 1, 使能 I2C 时钟。
- 2. 配置 PRESETO.I2CREN 为 1, I2C 复位释放。
- 3. 将 P10, P04 配置为内部上拉。
- 4. 配置 I2C CLK DIV,设置 I2C 传输速率(从机不需要设置速率)。
- 5. 配置 I2C CR0.MEN, 使能 I2C。

14.5.2 作为主发送器

- 1. 写 I2C CRO 寄存器的 MTX, MEN, MSTA 为 1, 发起 START 条件。
- 把 I2C 要访问的 SLAVE 的 7 位地址写入 I2C DR 寄存器中(slave 地址+W 标志)。
- 3. 发送完 SLAVE 地址后等待 ACK 回应, 判断有 ACK 回应后开始发送数据。
- 4. 发送完 SLAVE 地址有 ACK 回应后,开始发送数据,读到 TXE 为 1 时,向 I2C_DR 寄存器中写入要发送的字节,同时硬件会清除 TXE 位,等待 MTF 标志并软件清除 MTF 标志。
- 5. 重复4操作。
- 6. 最后一个字节发送前,如果 RSTA 为 1,在最后一个字节发送完成后硬件会自动产生 Restart 条件,并可继续发送数据;如果 TACK 为 1,在最后一个字节发送完成后会硬件会自动产生 STOP 条件,软件等待 MBB 为 0 后退出。

注: 以上是主发送器标准发送流程,即没有出现拉时钟的情况,若出现拉时钟(WBT==1)软件要立刻处理,否则 SCL 时钟会停止。

14.5.3 作为主接收器

- 1. 写 I2C CRO 寄存器的 MTX, MEN, MSTA 为 1, 发起 START 条件。
- 2. 把 I2C 要访问的 SLAVE 的 7 位地址写入 I2C DR 寄存器中(slave 地址+R 标志)。
- 3. 发送完 SLAVE 地址后等待 ACK 回应, 判断有 ACK 回应后才开始接收数据, 若无 ACK 回应,则重新发送 START 条件和 slave 地址,直到有 ACK 回应。
- 4. 发送完 SLAVE 地址有 ACK 回应后,开始接收数据,读到 RXNE 为 1 时,处理器读取 I2C_DR 寄存器中接收到的字节,同时硬件会清除 RXNE 位,等待 MTF 标志并软件清除 MTF 标志。
- 5. 重复4操作。
- 6. 最后一个字节发送前,如果 TACK 为 1,在最后一个字节接收完成后会硬件会自动产生 NACK 条件。

注:以上是主接收器标准接收流程,即没有出现拉时钟的情况,若出现拉时钟(WBT==1)软件要立刻处理,否则 SCL 时钟会停止。

14.5.4 作为从发送器

- 1. 向 I2C_SLAVE_ADDR1 寄存器或 I2C_SLAVE_ADDR2 寄存器写入 7 位地址作为自己在从机状态下被寻址的地址。使能 I2C_CR1.MTX_ANTO_EN, SLAVE 模式下会自动切换 SDA 的传输方向。
- 2. 等待 MAAS1 或 MASS2(ADDR2 EN=1)标志是否有效。地址匹配无效则重复此步。
- 等待地址匹配有效,判断 SRW 位是否为 1。为 0表示从接收,为 1表示从发送。
- 4. 写第一个要发送的数据给 I2C DR。
- 5. 等待 MBB 标志为 1,则可开始发送数据,读到 TXE 为 1 时,可以向 I2C_DR 寄存器中写入下一个要发送的字节,同时硬件会清除 TXE 位,等待 MTF 标志并软件清除 MTF 标志。
- 6. 重复 5 操作, 当收到主机发来的 NACK 后, I2C 模块释放总线。软件等待 MBB 为 0 后退出。

14.5.5 作为从接收器

- 向 I2C_SLAVE_ADDR1 寄存器或 I2C_SLAVE_ADDR2 寄存器写入 7 位地址作为自己在从机状态下被寻址的地址。使能 I2C_CR1.MTX_ANTO_EN, SLAVE 模式下会自动切换 SDA 的传输方向。
- 2. 写 I2C CR0.TACK 为 0, 从机接收完一个字节后自动发送 ACK。
- 3. 等待 MAAS1 或 MASS2(ADDR2_EN=1)标志是否有效。地址匹配无效则重复此步。
- 4. 等待地址匹配有效,判断 SRW 位是否为 0。为 0表示从接收,为 1表示从发送。
- 5. 等待 MBB 标志为 1,则可开始接收数据,等到读取 RXNE 为 1 时,处理器读取 I2C DR 寄存

器中接收到的字节,同时硬件会清除 RXNE 位,等待 MTF 标志并软件清除 MTF 标志。

6. 重复 5 操作, 当收到主机发来的 STOP 后, I2C 模块释放总线。软件等待 MBB 为 0 后退出。

UM2082F08 用户手册 ADC(模/数转换器)

15 ADC(模/数转换器)

15.1 主要特性

- 12 位分辨率
- 参考电压可选择 V_{DD}
- 最多可支持 6 路模拟通道输入,5 路通道为外部输入,1 路通道输入来源固定为内部 LDO
- 1Msps 采样速率
- ADC 电压基准选择 VDDH 作为 ADC 电源基准源

15.2 使用流程

ADC 使用流程:

- 1. 配置 PCLK0.ADCCEN 为 1,使能 ADC 时钟。
- 2. 配置 PRESETO.ADCREN 为 1, ADC 复位释放。
- 3. 配置 ADCGCR1.ADCRST 和 ADCGCR1.ADCPDEN, SAR ADC 释放和 SAR ADC 上电。
- 4. 配置 ADCVREF.VREFSEL,选择 ADC 电压基准源。
- 5. 配置 ADCGCR0.ADCCLKSEL,选择 ADC 时钟源,若选择内部时钟分频器产生的时钟,则配置 ADCCDR0 和 ADCCDR1 设置分频器的分频值。
- 6. 配置 ADCCONT 设置通道切换时间间隔。
- 7. 配置 ADCGCR3,配置 EOC 上升沿采样。
- 8. 配置 ADCGCR0.ADCCUNSET,选择 ADC 工作模式。
- 9. 若需要使能中断,则配置 ADCIER 使能中断。
- 10. 配置 ADCHL 选择 ADC 输入通道。
- 11. 配置 ADCGCR0.ADCEN, 使能 ADC。
- 12. 配置 ADCGCR1.ADCSTEN, 启动 ADC 转换。
- 13. 等待 ADCDR1.CHDATAV 置 1, 读取 ADCDR1.CHDATAH 和 ADCDR0.CHDATAL 通道数据寄存器。
- 14. 读取完后将 ADCCSTAT 写 1, 清除接收器 BUF。

使用注意事项:

单次采样模式下,ADC 使能后采到的第一个数据为无效数据,需软件舍弃处理;具体可参考 SDK 包中 ADC Demo 例程。

UM2082F08 用户手册 WDT (看门狗定时器)

16 WDT (看门狗定时器)

16.1 概述

看门狗定时器是一个递减计数器,看门狗定时器使用内部 RC32K 为时钟源,如果要使能看门狗,必须先确保 RC32K 已打开。在掉电模式下,看门狗会在定时器溢出时,复位芯片。 读或者写 RSTSTAT 寄存器均自动清除看门狗计数。

16.2 使用流程

WDT 使用流程:

- 1. 设置寄存器 PCLK0.WDTCEN,开启 WDT 时钟;设置寄存器 PRESET0.WDTREN,WDT 复位释放
- 2. 设置寄存器 RSTSTAT.WDEN, 使能看门狗功能。
- 3. 设置寄存器 RSTSTAT.WDT[2:0]的值,配置溢出周期最小值。
- 4. 在溢出周期内,重新写入寄存器 RSTSTAT.WDT[2:0]的值,喂狗,防止溢出。
- 5. 通过查看寄存器 RSTSTAT.WDOF 的值, 判断看门狗是否发生过溢出。

使用注意事项:

由于芯片个体差异,RCL 时钟有一定的误差,尤其在高低温环境下偏差较大,在应用上请尽量将看门狗定时时间比预设目标值大一些,具体数据需要测试得到。

UM2082F08 用户手册 LVD

17 LVD

17.1 概述

LVD 低电压检测功能。LVD 检测到低电压时可以产生复位或中断。LVD 可以对低电压检测的结果进行滤波,增强了系统的稳定性。

17.2 主要特性

- LVD 检测的电压源为 VDDH
- 可设低电压阈值
- 可软件使能低电压复位功能
- 可软件使能低电压中断功能
- 可对低电压检测的结果进行滤波

17.3 使用流程

- 1. 配置 LVDCON.LVDS[3:0], 配置阈值电压。
- 2. 若需要对低电压检测结果进行滤波,则配置 LVD LV 寄存器。
- 3. 配置 LVDCON.LVDEN, 使能 LVD 模块。
- 4. 若需要低电压复位功能,则配置 LVDCON.LVDREN,使能低电压复位功能。
- 5. 若需要低电压中断功能,则使能 OINTEN.VDDLOWEN 和 IEN1.EFCINTEN,LVD 中断号选用 EFC 的中断号。

UM2082F08 用户手册 中断

18 中断

18.1 特性

● 11 个中断源 EX0, ET0, ES1, ET1, ES0, EPWM, EADC, EFCINTEN, SPIINTEN, I2CINTEN, LPTIMINTEN

● 4层中断优先级可配

18.2 中断汇总

表 18-1: 中断信号汇总表

中断源	入口地址	允许位	标志位	轮询优先级	中断号(C 语言)
Reset	0000H	-	-	0(最高级)	-
INT0	0003H	EX0+PxIENy	PxIRQy	1	0
Timer0	000BH	ET0	TF0	3	1
UART1	0013H	ES1	RI1+TI1	5	2
Timer1	001BH	ET1	TF1	6	3
UART0	0023H	ES0	RI0+TI0	8	4
PWM	002BH	EPWM+PWMxIE	PWMxIF	10	5
ADC	0033H	EADC+ADCIER	RXAVL	2	6
SPI	003BH	ESPI+SPIIE	SPSR	4	7
EFC	005BH	EFCINTEN+OINTEN	OINTUS	7	11
LPTIMER	0063H	LPTIMINTEN+LPTIE	LPTIF	9	12
I2C	006BH	I2CINTEN +I2CCR	I2CSR	11	13

19 指令集

机器周期为1个时钟周期,且多数指令只需一个机器周期执行完成。

19.1 指令操作数说明

表 19-1: 指令操作数表

Rn	Working register R0-R7
direct	256 internal RAM locations, any Special Function Registers
@Ri	Indirect internal or external RAM location addressed by register R0 or R1
#data	8-bit constant included in instruction
#data 16	16-bit constant included as bytes 2 and 3 of instruction
bit	256 software flags, any bit-addressable I/O pin, control or status bit
Α	Accumulator
addr16	Destination address for LCALL and LJMP may be anywhere within the 64K bytes of program memory address space
addr11	Destination address for ACALL and AJMP will be within the same 2K bytes page of program memory as the first byte of the following instruction
rel	SJMP and all conditional jumps include an 8bit offset byte .Range is +127/-128 bytes relative to the first byte of the following instruction

19.2 算数操作指令

表 19-2: 算数操作数表

Mnemonic	Description	Code	Bytes	Cycles
ADD A,Rn	Add register to accumulator	28-2F	1	1
ADD A,direct	Add direct byte to accumulator	25	2	2
ADD A,@Ri	Add indirect RAM to accumulator	26-27	1	2
ADD A,#data	Add immediate data to accumulator	24	2	2
ADDC A,Rn	Add register to accumulator with carry flag	38-3F	1	1
ADDC A, direct	Add direct byte to A with carry flag	35	2	2
ADDC A,@Ri	Add indirect RAM to A with carry flag	36-37	1	2
ADDC A,#data	Add immediate data to A with carry flag	34	2	2
SUBB A,Rn	A,Rn Subtract register from A with borrow 98-9F		1	1
SUBB A,direct	Subtract direct byte from A with borrow	95	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	96-97	1	2
SUBB A,#data	Subtract immediate data from A with borrow	94	2	2
INC A	Increment accumulator	04	1	1
INC Rn	Increment register	08-0F	1	2
INC direct	Increment direct byte	05	2	3
INC @Ri	Increment indirect RAM	06-07	1	3
INC DPTR	Increment data pointer A3 1		1	1
DEC A	Decrement accumulator	14	1	1

Mnemonic	Description	Code	Bytes	Cycles
DEC Rn	Decrement register	18-1F	1	2
DEC direct	Decrement direct byte	15	2	3
DEC @Ri	Decrement indirect RAM	16-17	1	3
MUL AB	Multiply A and B	A4	1	5
DIV	Divide A by B	84	1	5
DA A	Decimal adjust accumulator	D4	1	1

19.3 逻辑操作指令

表 19-3: 逻辑操作指令表

Mnemonic	Description	Code	Bytes	Cycles	
ANL A,Rn	AND register to accumulator	58-5F	1	1	
ANL A, direct	AND direct byte to accumulator	55	2	2	
ANL A,@Ri	AND indirect RAM to accumlator	56-57	1	2	
ANL A,#data	AND immediate data to accumulator	54	2	2	
ANL direct,A	AND accumulator to direct byte	•			
ANL direct,#data	AND immediate data to direct byte	,			
ORL A,Rn	OR register to accumulator	48-4F	1	1	
ORL A,direct	OR direct byte to accumulator	45	2	2	
ORL A,@Ri	OR indirect RAM to accumulator	46-47	1	2	
ORL A,#data	OR immediate data to accumulator	44	2	2	
ORL direct,A	OR accumulator to direct byte	42	2	3	
ORL direct,#data	OR immediate data to direct byte	43 3		4	
XRL A,Rn	Exclusive OR register to accumulator	68-6F	1	1	
XRL A,direct	Exclusive OR direct byte to accumulator	65		2	
XRL A,@Ri	Exclusive OR indirect RAM to accumulator	66-67	1	2	
XRL A,#data	Exclusive OR immediate data to accumulator	64	2	2	
XRL direct,A	Exclusive OR accumulator to direct byte	62	2	3	
XRL direct,#data	Exclusive OR immediate data to direct byte	63	3	4	
CLR A	Clear accumulator	E4	1	1	
CPL A	Complement accumulator	F4	1	1	
RL A	Rotate accumulator left	23	1	1	
RLC A	Rotate accumulator left through carry	33	1	1	
RR A	Rotate accumulator right	03	1	1	
RRC A	Rotate accumulator right through carry	13	1	1	
SWAP A	Swap nibbles within the accumulator	C4	1	1	

19.4 数据传送指令

表 19-4: 数据传送指令表

Mnemonic	Description	Code	Bytes	Cycles
MOV A,Rn	Move register to accumulator	E8- EF	1	1
MOV A,direct	Move direct byte to accumulator	E5	2	2
MOV A,@Ri	Move indirect RAM to accumulator	E6- E7	1	2
MOV A,#data	Move immediate data to accumulator	74	2	2
MOV Rn,A	Move accumulator to register	F8- FF	1	2
MOV Rn,direct	ΛQ.			
MOV Rn,#data	Move immediate data to register	78-7F	2	2
MOV direct,A	Move accumulator to direct byte	F5	2	3
MOV direct,Rn	Move register to direct byte	88-8F	2	3
MOV direct1,direct2	Move direct byte to direct byte	85	3	4
MOV direct,@Ri	Move indirect RAM to direct byte	86-87	2	4
MOV direct,#data	Move immediate data to direct byte	75	3	3
MOV @Ri,A	Move accumulator to indirect RAM	F6- F7	1	3
MOV @Ri,direct	Move direct byte to indirect RAM		2	5
MOV @Ri,#data	Move immediate data to indirect RAM	76-77	2	3
MOV DPTR,#data16	Load data pointer with a 16-bit constant	90	3	3
MOVC A,@A+DPTR	Move code byte relative to DPTR to accumulator	93	1	3
MOVC A,@A+PC	Move code byte relative to PC to accumulator	83	1	3
MOVX A,@Ri	Move external RAM(8-bit addr.)to A	E2- E3	1	3-10
MOVX A,@DPTR	Move external RAM(16-bit addr.)to A	E0	1	3-10
MOVX @Ri,A	Move A to extern RAM(8-bit addr.)	F2- F3	1	4-11
MOVX @DPTR,A	Move A to extern RAM(16-bit addr.)	F0	1	4-11
PUSH direct	Push direct byte onto stack	C0	2	4
POP direct	Pop direct byte from stack	D0	2	3
XCH A,Rn	Exchange register with accumulator	C8- CF	1	2
XCH A,direct	Exchange direct byte with accumulator	C5	2	3
XCH A,@Ri	Exchange indirect RAM with accumultor	C6- C7	1	3
XCHD A,@Ri	Exchange low-order nibble indir.RAM with A	D6- D7	1	3

19.5 控制程序转移指令

表 19-5: 控制程序转移指令表

Mnemonic	Description	Code	Bytes	Cycles
ACALL addr11	Absolute subroutine call	xxx11	2	6
LCALL addr16	Long subroutine call	12	3	6
RET	from subroutine	22	1	4
RETI	from interrupt	32	1	4
AJMP addr11	Absolute jump	xxx01	2	3
LIMP addr16	Long jump	02	3	4
SJMP rel	Short jump (relative addr.)	80	2	3
JMP @A+DPTR	Jump indirect relative to the DPTR	73	1	2
JZ rel	Jump if accumulator is zero	60	2	3
JNZ rel	Jump if accumulator is not zero	70	2	3
JC rel	Jump if carry flag is set	40	2	3
JNC	Jump if carry flag is not set	50	2	3
JB bit,rel	Jump if direct bit is set	20	3	4
JNB bit,rel	Jump if direct bit is not set	30	3	4
JBC bit,direct rel	Jump if direct bit is set and clear bit	10	3	4
CJNE A,direct rel	Compare direct byte to A and jump if not equal	B5	3	4
CJNE A,#data rel	Compare immediate to A and jump if not equal	B4	3	4
CJNE Rn,#data rel	Compare immed. to reg. and jump if not equal	B8-BF	3	4
CJNE @Ri,#data rel	Compare immed. to ind. and jump if not equal	B6-B7	3	4
DJNE Rn,rel	Decrement register and jump if not zero	D8-DF	2	3
DJNZ direct,rel	Decrement direct byte and jump if not zero	D5	3	4
NOP	No operation	00	1	1

19.6 位操作指令

表 19-6: 位操作指令表

Mnemonic	Description	Code	Bytes	Cycles
CLR C	Clear carry flag	C3	1	1
CLR bit	Clear direct bit	C2	2	3
SETB C	Set carry flag	D3	1	1
SETB bit	Set direct bit	D2	2	3
CPL C	Complement carry flag	В3	1	1
CPL bit	Complement direct bit	B2	2	3
ANL C,bit	AND direct bit to carry flag	82	2	2
ANL C,/bit	AND complement of direct bit to carry	В0	2	2
ORL C,bit	OR direct bit to carry flag	72	2	2
ORL C,/bit	OR complement of direct bit to carrry	A0	2	2
MOV C,bit	Move direct bit to carry flag	A2	2	2
MOV bit,C	Move carry flag to direct bit	92	2	3

电气参数 20

20.1 绝对最大额定值

外部条件如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是 给出能承受永久性损坏的最大载荷,并不意味着在此条件下器件的功能性操作无误。器件长期工作 在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
Vss		-0.3	-	V
V_{DDA}	工作电压	2.0	3.6	V
V_{DDH}		2.0	3.6	V
TJ	结温温度	-40	+100	$^{\circ}$
T _{stg}	存储温度	-50	+150	$^{\circ}$
I _{DD}	V _{DDA} /V _{DDH} 引脚的最大输入电流	-	50	mA
I _{SS}	V _{ss} 引脚的最大输出电流	-	50	mA
-	I/O 引脚的最大输入灌电流	12	-	mA
-	I/O 引脚的最大输出拉电流	12	-	mA
V _{ESD}	静电防护电压	-3	+3	KV
I _{LATH}	Latch up 电流	-100	+100	mA

表 20-1: 芯片绝对最大额定值表

注意: IO 管脚的输入电压不可超过 VDDH 电压值, 否则会造成芯片损坏。

RF 主要电气特性(不含 MCU) 20.2

20.2.1 通用工作条件

参数以及条件

电源电压

环境温度

载波频率

最小值 典型值 最大值 单位 2 3.6 3.3 V °C -40 +85 交流输入阻抗(125KHz) 2 ΜΩ

300

表 20-2: 通用工作条件

30

符号

 T_A

 R_{in}

 V_{DD}/V_{DDH}

KHz

20.2.2 低频无线唤醒功耗值

表 20-3: 各工作模式下功耗表

符号	参数以及条件	最小值	典型值	最大值	单位
I1CHOORC	1 个通道和 RC 振荡器开启,12.5% duty 间		1.7		۸
TICHOORC	歇运行模式	-	1.7	-	μA
I3CHOORC	3 个通道和 RC 振荡器开启,12.5% duty 间		2.1		۸
ISCHOORC	歇运行模式	-	2.1	-	μA
I1CHRC	1 个通道和 RC 振荡器开启,标准监听模式	-	2.9	-	μA
SPIHRC	2 个通道和 RC 振荡器开启,标准监听模式	-	4.2	-	μA
I3CHRC	3 个通道和 RC 振荡器开启,标准监听模式	-	5.6	-	μA
I3DATA	3 个通道和 RC 振荡器开启,对码匹配使能		1.5		
ISDAIA	和数据接收模式	_	4.5	-	μA

20.2.3 低频无线唤醒通道建立时间

表 20-4: 通道建立时间表

符号	参数以及条件	最小值	典型值	最大值	单位
T _{SAMP}	放大器稳定时间		250	ı	μs

20.2.4 低频无线唤醒接收灵敏度

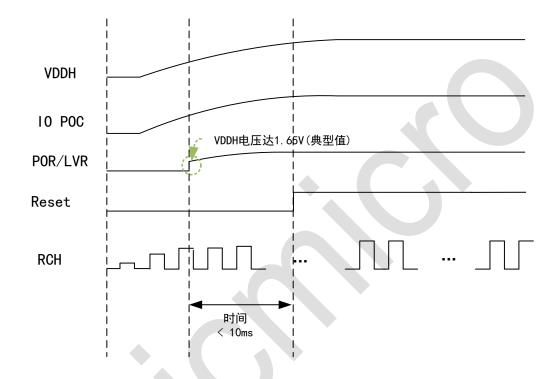
表 20-5: 接收灵敏度表

符号	参数以及条件	最小值	典型值	最大值	单位
SEN	接收灵敏度		70	•	uVRMS

20.3 MCU 主要电气特性(不含 RF)

20.3.1 通用工作条件

表 20-6: 通用工作条件


符号	描述	最小值	最大值	单位
V_{DDH}	工作电压	2.0	3.6	V
T _A	环境温度	-40	+85	°C
F _{sys}	系统主频	0.1	24	MHz

注: F_{sys} 低于 2MHz 时, flash 只能取指执行代码,不可擦除和写操作。

20.3.2 上电和掉电时的工作条件

表 20-7: 上电和掉电时的工作条件

符号	描述	最小值	最大值	单位	
_	VDDH 上升时间速率	0	5000		
IVDDH	VDDH 下降时间速率	0	5000	µs/V	

注意: 掉电时, 当LVR产生低电平复位后, 再次上电后, 需要经历整个上电流程

20.3.3 DC 参数

▶ 静态参数(使用温度范围: T_A= -40 ~ +85°C)

表 20-8: 静态参数表

符号	描述	测试条件	最小值	典型值	最大值	单位
V_{DDH}	供电电压	Power supply for I/O buffer and pre-driver	2.0	3.3	3.6	>
I _{DD}	工作电流	运行模式(Active); V _{DDH} =3.3 V; T _A =25℃; 在 Flash 中运行程序 while(1){}; 所有外设被禁止: CCLK = 16 MHz	-	1.5	-	mA
		空闲模式(Sleep);V _{DDH} = 3.3 V; T _A =25°C	-	0.67	-	mA

符号	描述	测试条件	最小值	典型值	最大值	单位
		深度睡眠模式(DeepSleep); V _{DDH} = 3.3 V; T _A =25°C(不含 RF)	-	0.59	-	μΑ
		深度睡眠模式(DeepSleep); V _{DDH} = 3.3 V; T _A =25°C(含 RF,间歇 三通道模式下)	-	3.13	-	μΑ
		停止模式(Stop); V _{DDH} = 3.3 V; T _A =25°C(不含 RF)	-	0.32	-	μΑ
		停止模式(Stop); V _{DDH} = 3.3 V; T _A = 25°C(含 RF,间接三通道模式下)	-	2.63	-	μА

注: 典型值范围不保证。列表里的值都是在正常电压和室温下取得的。

➢ IO 特性

表 20-9: IO 特性表

符号	描述	测试条件	最小值	典型值	最大值	单位
I _{IL}	低电平输入 电流	V _i =0V	-1		-	μΑ
I _{IH}	高电平输入 电流	$V_{I} = V_{DD}$	-	_	+1	μΑ
Vo	输出电压	输出管脚 active	0	1	V_{DD}	V
V _{IH}	高电平输入	-	$0.7V_{DDH}$	1	V_{DDH}	V
VIL	低电平输入	-	0	-	0.3V _{DDH}	V
V _{hys}	迟滞电压		0.1V _{DD}	1	-	V
Vон	高电平输出	3.3V, 在高驱动模式正常输出 I _{Load} = 8mA 在低驱动模式正常输出 I _{Load} = 4mA	V _{DD} -0.4	-	-	V
V _{OL}	低电平输出	3.3V, 在高驱动模式正常输出 I _{Load} = 8mA 在低驱动模式正常输出 I _{Load} = 4mA	-	-	0.4	V
Іон	高电平输出 电流	3.3V, 在高驱动模式正常输出 在低驱动模式正常输出	-	8 4	-	mA
l _{OL}	低电平输出 电流	3.3V, 在高驱动模式正常输出 在低驱动模式正常输出	-	8 4	-	mA
R _{pup} R _{pdn}	上拉/下拉 电阻	3.3V	20	-	100	ΚΩ
C _{IN}	容性阻抗	3.3V	-	-	10	pF

20.3.4 交流 AC 参数

> 输出特性

表 20-10: 端口输出特性表

符号	描述	条件	最小值	最大值	单位
V _{OH}	高电平输出源电流	Sourcing 4mA, Vcc=3.3V	Vcc-0.25	-	V
VOH		Sourcing 8mA, Vcc=3.3V	Vcc-0.6	-	V
V _{OL}	低电平输出下沉电	Sinking 4mA, V _{CC} =3.3V	-	Vss+0.25	V
VOL	流	Sinking 8mA, Vcc=3.3V	-	Vss+0.6	V
V_{OHD}	高电平输出双源电	Sourcing 8mA, Vcc=3.3V	Vcc-0.25	-	V
VOHD	流	Sourcing 16mA, Vcc=3.3V	Vcc-0.6	-	V
V	低电平输出双吸电	Sinking 8mA, Vcc=3.3V	-	Vss+0.25	V
V _{OLD}	流	Sinking 16mA, Vcc=3.3V	-	Vss+0.6	V

> 输入特性

表 20-11: 端口输入特性表

	W To III Am Hally (1917-W					
符号	描述	条件	最小值	典型值	最大值	单位
.,	Positive-going input	V _{CC} =2.0V	1.1	1.2	1.3	V
V _{IT+}	threshold voltage	V _{CC} =3.3V	1.8	2.0	2.2	V
, Negative-going input	V _{CC} =2.0V	0.7	0.8	0.9	V	
V _{IT-}	threshold voltage	V _{CC} =3.3V	1.1	1.3	1.5	V
V	Input voltage	V _{CC} =2.0V	0.4	0.4	0.4	V
V_{hys}	hysteresis(V _{IT+} - V _{IT-})	V _{CC} =3.3V	0.7	0.7	0.7	V
R _{pullhigh}	Pullup resistor	Pullup enabled	-	80	-	ΚΩ
C _{input}	Input capacitance		-	5	-	pf

▶ 内部 RCH 振荡器(MCU)

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~+85°C。

表 20-12: RCH 振荡器特性表

符号	描述	条件	最小值	典型值	最大值	单位
F _{HSI}	时钟频率	T _A =25°C, 已经 完成修调	24*(1- 0.3%)	24	24*(1+0.3%)	MHz
		T _A =-40 ~ +85°C	24*(1-3%)	24	24*(1+3%)	MHz
Duty	占空比	F _{HSI} =24MHz	-	50±10%	-	%
T _{SU}	时钟建立时间	-	-	1.2		μs
I _{VDD}	消耗电流(不含 RF)	-	-	300	-	μΑ

▶ 内部 RCL 振荡器 (MCU)

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~+85°C。

表 20-13: RCL 振荡器特性表

符号	描述	条件	最小值	典型值	最大值	单位
F _{LSI}	时钟频率	TA =-40 ~ +85°C,已 经完成修调	24	32	40	KHz
		未修调	16	32	48	KHz
Duty	占空比	-	48	50	52	%
T _{SU}	时钟建立时间	-	-	100	200	μs
I _{VDD}	消耗电流(不含 RF)	-	-	160	280	nA

▶ 低频无线唤醒内部独立 RC 振荡器

表 20-14: RC 振荡器表

符号	参数以及条件	最小值	典型值	最大值	单位
F _{RCCAL32}		30	32	34	KHz
T _{RC}	启动时间	-	-	1	S
I _{RC}	消耗电流	-	300	-	nA

▶ 低频无线唤醒内部独立 LC 振荡器

表 20-15: LC 振荡器表

符号	参数以及条件	最小值	典型值	最大值	单位
F _{LCOM}	频率	30	-	300	KHz
RPARMIN	最小等效并联电阻	-	10	-	kΩ

➢ VDT 电压检测(LVR/LVD)

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~+85°C。

表 20-16: LVR 低电压检测特性表

符号	描述	条件	最小值	典型值	最大值	单位
$V_{\text{IN_LVR}}$	输入的检测电压范围	-	0	-	V_{DD}	٧
V _{LVR}	检测阈值	ADJ_LVR<3:0>=0000 ADJ_LVR<3:0>=0001 ADJ_LVR<3:0>=0010 ADJ_LVR<3:0>=0011 ADJ_LVR<3:0>=0100 ADJ_LVR<3:0>=0101 ADJ_LVR<3:0>=0110	-	1.65 1.75 1.85 1.95 2.05 2.15 2.25	-	V
VLVR	(立水) 以	ADJ_LVR<3:0>=0111 ADJ_LVR<3:0>=1000 ADJ_LVR<3:0>=1001 ADJ_LVR<3:0>=1010 ADJ_LVR<3:0>=1011 ADJ_LVR<3:0>=1100		2.35 2.45 2.55 2.65 2.75 2.85		V

符号	描述	条件	最小值	典型值	最大值	单位
		ADJ_LVR<3:0>=1101		2.95		
		ADJ_LVR<3:0>=1110		3.05		
		ADJ_LVR<3:0>=1111		3.15		
V _{HYS}	迟滞电压	-	-	100	-	mV
I_{VDD}	消耗电流(不含 RF)	-	-	800	-	nA

表 20-17: LVD 低电压检测特性表

符号	描述	条件	最小值	典型值	最大值	单位
$V_{\text{IN_LVD}}$	输入的检测电压范围	-	0	-	V_{DD}	٧
V _{LVD}	检测阈值	ADJ_LVD<3:0>=0000 ADJ_LVD<3:0>=0001 ADJ_LVD<3:0>=0010 ADJ_LVD<3:0>=0010 ADJ_LVD<3:0>=0011 ADJ_LVD<3:0>=0100 ADJ_LVD<3:0>=0101 ADJ_LVD<3:0>=0110 ADJ_LVD<3:0>=0111 ADJ_LVD<3:0>=1000 ADJ_LVD<3:0>=1001 ADJ_LVD<3:0>=1010 ADJ_LVD<3:0>=1011 ADJ_LVD<3:0>=1011 ADJ_LVD<3:0>=1010 ADJ_LVD<3:0>=1111 ADJ_LVD<3:0>=1111 ADJ_LVD<3:0>=1111		1.65 1.75 1.85 1.95 2.05 2.15 2.25 2.35 2.45 2.55 2.65 2.75 2.85 2.95 3.05 3.15	-	V
V _{HYS}	迟滞电压		-	100	-	mV
I _{VDD}	消耗电流(不含 RF)	-	-	800	-	nA

20.3.5 12 位 A/D 转换器

以下电气特性数据在 T_A=25℃, V_{DDA}=3.3V 和 V_{DDD15}=1.5V 下测得。

表 20-18: ADC 特性表

次 20 101 / 20 11 注文						
符号	描述	条件	最小值	典型值	最大值	单位
V _{DDA50}	模拟供电电压	-	2.0	3.3	3.6	٧
T _{emp}	运行环境温度	-	-40	25	+85	°C
IN[15:0]	模拟输入范围	-	REFN	-	REFP	V
V _{REFP}	REFP 参考电压	-	2.0	3.3	3.6	V
V _{REFN}	REFN 参考电压	-	0	0	0	V
RES	分辨率	-	-	12	-	Bit

符号	描述	条件	最小值	典型值	最大值	单位
Offset error	-	-	-3.0	±1.5	3.0	LSB
Gain error	-	-	-	±2	±5	LSB
TE	Total un-adjust effective bit number	-	-	10.5	-	LSB
INL	积分非线性误差	-	-3.0	±1.5	2.0	LSB
DNL	差分非线性误差	-	-1.0	±0.6	1.5	LSB
F _{clk}	时钟频率	-	-	-	16	MHz
SPS	采样率	-	30	-	1000	KSPS
Ts	采样时间	-	4/F _{clk}	-	-	-
Tc	转换时间	-	-	12/F _{clk}	-	-
T _{setup}	ADC 使能到得到第一个有效数据	-	32/F _{clk}	-	>	-
h	Power VDDA50@enable mode	-	-	1	-	mA
IVDDA50	Power VDDA50@disable mode		-	-	0.2	μΑ
	Power VDDD18@enable mode	-	-	100	-	μΑ
IVDDD18	Power VDDD18@disable mode	-	-	-	0.1	μA
I _{REFP}	参考信号电流	RT V _{DDA} =3V	-	100	-	μΑ
SNDR	信噪比加失真率	@ 30 kHz	-	64	-	dB
THD	总谐波失真	@ 30 kHz	-	-65	-	dB
SFDR	无杂散动态范围	@ 30 kHz	-	64	-	dB
R _{REFP}	REFP 输入等价电阻	-	-	700	-	Ω
R _{in}	模拟输入等价电阻	V _{DDA50} =3V	-	500	-	Ω
C _{in}	模拟输入等价电容	ADC in the sampling phase	-	26	30	pF
C _{load}	数字输出加载帽	-	-	-	0.1	pF

说明:

- 用户必须保证 Ts≥4/Fclk。
- 当 Ts增加时,采样时间也随着 Ts增加。

20.3.6 内存擦/写特性

表 20-19: 内存擦/写特性表

符号	描述	条件	最小值	典型值	最大值	单位
ECflash	Sector Endurance	-	20K	-	-	cycles
RETflash	Data retention	25℃	100	-	-	Years
		85°C	20	-	-	Years
Tprog	Byte Program Time	-	6	1	7.5	μs
	Sector Erase Time	-	4	-	5	ms
_	Chip Erase Time	-	20	-	40	ms

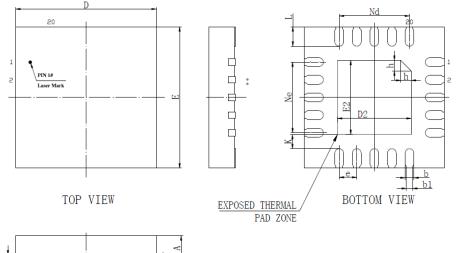

20.3.7 低功耗模式返回时间

表 20-20: 低功耗模式返回时间表

符号	描述	条件	最小值	典型值	最大值	单位
T _{wakeup}	Deep sleep mode to Active mode	Regulator voltage =1.5V,T _A =25°C, 16MHz		16.6	-	μS

21 封装信息

21.1 QFN20 (4*4mm)

SYMBOL	MILLIMETER				
STMBOL	MIN	NOM 0.85 0.02 0.25 0.18REF 0.203RE 4.00 2.10 0.50BSC 2.00BSC 4.00 2.10 0.55 0.30	MAX		
A	0.80	0.85	0.90		
A1	0	0.02	0.05		
ь	0. 20	0.25	0.30		
b1		0.18REF	1		
с	0.203REF				
D	3.90	4.00	4. 10		
D2	2.00	2. 10	2.20		
e	0. 50BSC				
Nd		2. 00BSC			
Ne		2. 00BSC			
E	3. 90	4.00	4. 10		
E2	2.00	2. 10	2.20		
L	0.50	0.55	0.60		
h	0.25	0. 30	0.35		
K	0. 40REF				

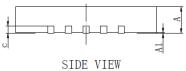


图 21-1: QFN20 封装图